Abstract
We identified a rhodol bearing a hydroxymethyl group (HMDER) as a suitable scaffold for designing fluorescence probes for various hydrolases. HMDER shows strong fluorescence at physiological pH, but phenolic O-alkylation of HMDER results in a strong preference for the spirocyclic form, which has weak fluorescence. As a proof of concept, we utilized this finding to develop a new fluorescence probe for β-galactosidase. This probe has favorable characteristics for imaging in biological samples: it has good cellular permeability, and its hydrolysis product is well-retained intracellularly. It could rapidly and clearly visualize β-galactosidase activity in cultured cells and in Drosophila melanogaster tissue, which has rarely been achieved with previously reported fluorescence probes.
Original language | English |
---|---|
Pages (from-to) | 12960-12963 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 133 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2011 Aug 24 |