TY - JOUR
T1 - A 13-oxo-9,10-epoxytridecenoate phospholipid analogue of the genotoxic 4,5-epoxy-2E-decenal
T2 - Detection in vivo, chemical synthesis, and adduction with DNA
AU - Mesaros, Clementina
AU - Gugiu, Bogdan G.
AU - Zhou, Rong
AU - Lee, Seon Hwa
AU - Choi, Jaewoo
AU - Laird, James
AU - Blair, Ian A.
AU - Salomon, Robert G.
PY - 2010/3/15
Y1 - 2010/3/15
N2 - Often guided by analogy with nonphospholipid products from oxidative cleavage of polyunsaturated fatty acids, we previously identified a variety of biologically active oxidatively truncated phospholipids. Previously, 4,5-epoxy-2(E)-decenal (4,5-EDE) was found to be produced by oxidative cleavage of 13-(S)-hydroperoxy-9,11-(Z,E)-octadeca-dienoic acid (13-HPODE). 4,5-EDE reacts with deoxy-adenosine (dAdo) and deoxy-guanosine (dGuo) to form mutagenic etheno derivatives. We hypothesized that a functionally similar and potentially mutagenic compound, that is, 13-oxo-9,10-epoxytridecenoic acid (OETA), would be generated from 9-HPODE through an analogous fragmentation. We expected that an ester of 2-lysophosphatidylcoline (PC), OETA-PC, would be produced by oxidative cleavage of 9-HPODEPC in biological membranes. An efficient, unambiguous total synthesis of trans-OETA-PC was first executed to provide a standard that could facilitate the identification of this phospholipid epoxyalkenal that was shown to be produced during oxidation of the linoleic acid ester of 2-lysoPC. Finally, trans-OETA-PC was detected in a lipid extract from rat retina. The identity of the naturally occurring oxidatively truncated phospholipid was further confirmed by derivatization with methoxylamine that produced characteristic mono and bis adducts. The average amount of trans-OETA-PC in rat retina, 0.33 pmol, is relatively low as compared to other oxidatively truncated PCs, for example, the 4-hydroxy-7-oxohept-5-enoic acid PC ester (2.5 pmol) or the 4-keto-7-oxohept-5- enoic acid PC ester (1.7 pmol), derived from the docosahexaenoic acid ester of 2-lysoPC. This, most likely, is because docosahexaenoate PCs are particularly abundant in the retina as compared to the linoleate PC ester precursor of OETA-PC. As predicted by analogy with 4,5-EDE, OETA-PC reacts with dAdo and dGuo, as well as with DNA, to form mutagenic etheno adducts.
AB - Often guided by analogy with nonphospholipid products from oxidative cleavage of polyunsaturated fatty acids, we previously identified a variety of biologically active oxidatively truncated phospholipids. Previously, 4,5-epoxy-2(E)-decenal (4,5-EDE) was found to be produced by oxidative cleavage of 13-(S)-hydroperoxy-9,11-(Z,E)-octadeca-dienoic acid (13-HPODE). 4,5-EDE reacts with deoxy-adenosine (dAdo) and deoxy-guanosine (dGuo) to form mutagenic etheno derivatives. We hypothesized that a functionally similar and potentially mutagenic compound, that is, 13-oxo-9,10-epoxytridecenoic acid (OETA), would be generated from 9-HPODE through an analogous fragmentation. We expected that an ester of 2-lysophosphatidylcoline (PC), OETA-PC, would be produced by oxidative cleavage of 9-HPODEPC in biological membranes. An efficient, unambiguous total synthesis of trans-OETA-PC was first executed to provide a standard that could facilitate the identification of this phospholipid epoxyalkenal that was shown to be produced during oxidation of the linoleic acid ester of 2-lysoPC. Finally, trans-OETA-PC was detected in a lipid extract from rat retina. The identity of the naturally occurring oxidatively truncated phospholipid was further confirmed by derivatization with methoxylamine that produced characteristic mono and bis adducts. The average amount of trans-OETA-PC in rat retina, 0.33 pmol, is relatively low as compared to other oxidatively truncated PCs, for example, the 4-hydroxy-7-oxohept-5-enoic acid PC ester (2.5 pmol) or the 4-keto-7-oxohept-5- enoic acid PC ester (1.7 pmol), derived from the docosahexaenoic acid ester of 2-lysoPC. This, most likely, is because docosahexaenoate PCs are particularly abundant in the retina as compared to the linoleate PC ester precursor of OETA-PC. As predicted by analogy with 4,5-EDE, OETA-PC reacts with dAdo and dGuo, as well as with DNA, to form mutagenic etheno adducts.
UR - http://www.scopus.com/inward/record.url?scp=77949378546&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949378546&partnerID=8YFLogxK
U2 - 10.1021/tx9002484
DO - 10.1021/tx9002484
M3 - Article
C2 - 20131875
AN - SCOPUS:77949378546
SN - 0893-228X
VL - 23
SP - 516
EP - 527
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 3
ER -