TY - JOUR
T1 - A Generalized Approach Obeying the Third Law of Thermodynamics for the Expression of Lattice Stability and Compound Energy
T2 - A Case Study of Unary Aluminum
AU - Omori, Toshihiro
AU - Bigdeli, Sedigheh
AU - Mao, Huahai
N1 - Funding Information:
Acknowledgments The authors are grateful to Prof. Malin Selleby and Prof. Mats Hillert for valuable discussions. The work was performed within the VINN Excellence Center Hero-m, financed by VINNOVA (Grant No. 2012-02892), the Swedish Governmental Agency for Innovation Systems, Swedish industry, and KTH Royal Institute of Technology. One of the authors, TO, acknowledges the support from JSPS KAKENHI and from the Program for Promoting the Enhancement of Research Universities by MEXT, Japan.
Funding Information:
The authors are grateful to Prof. Malin Selleby and Prof. Mats Hillert for valuable discussions. The work was performed within the VINN Excellence Center Hero-m, financed by VINNOVA (Grant No. 2012-02892), the Swedish Governmental Agency for Innovation Systems, Swedish industry, and KTH Royal Institute of Technology. One of the authors, TO, acknowledges the support from JSPS KAKENHI and from the Program for Promoting the Enhancement of Research Universities by MEXT, Japan. This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.
Publisher Copyright:
© 2018, The Author(s).
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Recently, Hillert and Selleby proposed a simple method for expression of the lattice stability or Gibbs energy of formation that does not violate the third law of thermodynamics. This method describes the derivation of the Gibbs energy function from high temperatures down to 0 K by interpolation, instead of extrapolation from room temperature to 0 K. In the present work, their original method is discussed in terms of determination of the characteristic parameter values. Keeping the essential interpolation character of their method, a generalized approach is presented for expressing the lattice stability through parameter optimizations. This approach retains the zero point entropy of substances and is in line with the development of the third generation CALPHAD databases. Using the Al unary system as a case study, the lattice stabilities of the hcp and bcc phases are investigated. The respective Einstein temperatures are also evaluated. At high temperatures, the present descriptions reproduce the lattice stabilities suggested by SGTE for the existing second generation of databases, with a reasonable accuracy. More importantly, information from ab initio calculations (total energy at 0 K) is also used for this optimization and the present method results in a physically sounder description of thermodynamic properties at lower temperatures down to 0 K. The present approach provides a simple and flexible way to estimate the lattice stabilities, with potential applicability for the Gibbs energy of formation of stoichiometric compounds and the excess energy of solution phases, in accordance with the third law of thermodynamics.
AB - Recently, Hillert and Selleby proposed a simple method for expression of the lattice stability or Gibbs energy of formation that does not violate the third law of thermodynamics. This method describes the derivation of the Gibbs energy function from high temperatures down to 0 K by interpolation, instead of extrapolation from room temperature to 0 K. In the present work, their original method is discussed in terms of determination of the characteristic parameter values. Keeping the essential interpolation character of their method, a generalized approach is presented for expressing the lattice stability through parameter optimizations. This approach retains the zero point entropy of substances and is in line with the development of the third generation CALPHAD databases. Using the Al unary system as a case study, the lattice stabilities of the hcp and bcc phases are investigated. The respective Einstein temperatures are also evaluated. At high temperatures, the present descriptions reproduce the lattice stabilities suggested by SGTE for the existing second generation of databases, with a reasonable accuracy. More importantly, information from ab initio calculations (total energy at 0 K) is also used for this optimization and the present method results in a physically sounder description of thermodynamic properties at lower temperatures down to 0 K. The present approach provides a simple and flexible way to estimate the lattice stabilities, with potential applicability for the Gibbs energy of formation of stoichiometric compounds and the excess energy of solution phases, in accordance with the third law of thermodynamics.
KW - Gibbs energy of formation
KW - aluminum
KW - excess energy
KW - lattice stability
KW - thermodynamic database
KW - third generation of CALPHAD databases
UR - http://www.scopus.com/inward/record.url?scp=85048360999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048360999&partnerID=8YFLogxK
U2 - 10.1007/s11669-018-0641-4
DO - 10.1007/s11669-018-0641-4
M3 - Article
AN - SCOPUS:85048360999
SN - 1547-7037
VL - 39
SP - 519
EP - 531
JO - Bulletin of Alloy Phase Diagrams
JF - Bulletin of Alloy Phase Diagrams
IS - 5
ER -