Abstract
Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO 2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50â.mAg-1, the discharge capacity remains 116â.mAhg-1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity.
Original language | English |
---|---|
Article number | 3383 |
Journal | Scientific Reports |
Volume | 3 |
DOIs | |
Publication status | Published - 2013 Nov 29 |