A nonlinear signal-based control method and its applications to input identification for nonlinear SIMO problems

Ryuta Enokida, Izuru Takewaki, David Stoten

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.

Original languageEnglish
Pages (from-to)6607-6622
Number of pages16
JournalJournal of Sound and Vibration
Issue number24
Publication statusPublished - 2014 Dec 2
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering


Dive into the research topics of 'A nonlinear signal-based control method and its applications to input identification for nonlinear SIMO problems'. Together they form a unique fingerprint.

Cite this