A posteriori study on wall modeling in large eddy simulation using a nonlocal data-driven approach

Research output: Contribution to journalArticlepeer-review

Abstract

The feasibility of wall modeling in large eddy simulation (LES) using convolutional neural network (CNN) is investigated by embedding a data-driven wall model developed using CNN into the actual simulation. The training dataset for the data-driven wall model is provided by the direct numerical simulation of turbulent channel flow at R e τ = 400 . The data in the inner layer, excluding y + ≤ 10 , are used in the training process. The inputs of the CNN wall model are the velocity components, and the outputs of the wall model are the streamwise and spanwise components of the wall shear stress. An a priori test has already been carried out in our previous study to assess the potential of CNN in establishing a wall model, and the results have shown the reasonable accuracy of the CNN model in predicting the wall shear stress. In this study, the focus is on the a posteriori test, and the performance of the CNN wall model is investigated in the actual LES under various conditions. Initially, the model is used in a simulation with the same specifications as those used for obtaining the training dataset, and the effect of the wall-normal distance of the CNN model inputs is investigated. Then, the model is tested for coarser grid sizes and higher Reynolds number flows to check its generalizability. The performance of the model is also compared with one of the commonly used existing wall models, called ordinary differential equation (ODE)-based wall model. The results show that the CNN wall model has better accuracy in predicting the wall shear stress in the a posteriori test compared to the ODE-based wall model. Moreover, it is able to predict the flow statistics with reasonable accuracy for the wall-modeled LES under various conditions different from those of the training dataset.

Original languageEnglish
Article number065164
JournalPhysics of Fluids
Volume36
Issue number6
DOIs
Publication statusPublished - 2024 Jun 1

Fingerprint

Dive into the research topics of 'A posteriori study on wall modeling in large eddy simulation using a nonlocal data-driven approach'. Together they form a unique fingerprint.

Cite this