A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

Masayuki Fukumitsu, Shingo Hasegawa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

From the birth of the blockchain technology, multisignatures attract much attention as a tool for handling blockchain transactions. Concerning the application to the blockchain, multisignatures with public-key aggregation, which can compress public keys of signers to a single public key, is preferable to the standard multisignature because the public keys and the signature used in a transaction are stored to verify the transaction later. Several multisignature schemes with public key aggregation are proposed, however, there are no known schemes having a tight security reduction.We propose a first multisignature with public-key aggregation whose security is proven to be tightly secure under the DDH assumption in the random oracle model. Our multisignature is based on the DDH-based multisignature by Le, Yang, and Ghorbani, however, our security proof is different from theirs. The idea of our security proof originates from another DDH-based multisignature by Le, Bonnecaze, and Gabillon whose security proof is tightly one. By tailoring their security proof to a setting which admits the public-key aggregation, we can prove the tight security of our multisignature.

Original languageEnglish
Title of host publicationProceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages321-327
Number of pages7
ISBN (Electronic)9781728199191
DOIs
Publication statusPublished - 2020 Nov
Event8th International Symposium on Computing and Networking Workshops, CANDARW 2020 - Virtual, Naha, Japan
Duration: 2020 Nov 242020 Nov 27

Publication series

NameProceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020

Conference

Conference8th International Symposium on Computing and Networking Workshops, CANDARW 2020
Country/TerritoryJapan
CityVirtual, Naha
Period20/11/2420/11/27

Keywords

  • Blockchain
  • DDH Assumption
  • Key Aggregation
  • Multisignature
  • Tight Security

Fingerprint

Dive into the research topics of 'A Tightly Secure DDH-based Multisignature with Public-Key Aggregation'. Together they form a unique fingerprint.

Cite this