TY - JOUR

T1 - Ab initio calculation of optical-mode frequencies in compressed solid hydrogen

AU - Nagao, Kazutaka

AU - Takezawa, Tomoki

AU - Nagara, Hitose

PY - 1999

Y1 - 1999

N2 - Vibrational optical-mode frequencies have been calculated for some of the structures recently proposed by theoretical and experimental studies of compressed solid hydrogen, by means of first principles band theoretical treatments using the plane wave basis set, in the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. The results of the GGA are compared with those of the LDA, and both results are compared with recent Raman scattering and infrared absorption experiments. The possible structures of the compressed molecular solid hydrogen at megabar pressures have been discussed in light of vibrational optical modes and their frequencies. The total energy is also calculated in the GGA for some of the candidate structures in the molecular phase as well as those in the atomic phase. The molecular phase persists over 400 GPa, which can result in the metallization prior to the molecular dissociation. The effects of the band gap closure on the frequencies are studied together with the effects of the GGA. The GGA decreases the bond length and hence increases the vibron frequencies, by which the calculated frequencies show excellent agreement with the experiments for the (Formula presented) structure, while the phonon frequencies are less affected by the GGA. The shorter bond length leads to wider band gaps. The GGA favors the molecular phase more than the atomic phase. Our results of the frequencies suggest that the (Formula presented) structure is most probable in phase II if the molecules are oriented there and the (Formula presented) is in phase III at pressures under (Formula presented).

AB - Vibrational optical-mode frequencies have been calculated for some of the structures recently proposed by theoretical and experimental studies of compressed solid hydrogen, by means of first principles band theoretical treatments using the plane wave basis set, in the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. The results of the GGA are compared with those of the LDA, and both results are compared with recent Raman scattering and infrared absorption experiments. The possible structures of the compressed molecular solid hydrogen at megabar pressures have been discussed in light of vibrational optical modes and their frequencies. The total energy is also calculated in the GGA for some of the candidate structures in the molecular phase as well as those in the atomic phase. The molecular phase persists over 400 GPa, which can result in the metallization prior to the molecular dissociation. The effects of the band gap closure on the frequencies are studied together with the effects of the GGA. The GGA decreases the bond length and hence increases the vibron frequencies, by which the calculated frequencies show excellent agreement with the experiments for the (Formula presented) structure, while the phonon frequencies are less affected by the GGA. The shorter bond length leads to wider band gaps. The GGA favors the molecular phase more than the atomic phase. Our results of the frequencies suggest that the (Formula presented) structure is most probable in phase II if the molecules are oriented there and the (Formula presented) is in phase III at pressures under (Formula presented).

UR - http://www.scopus.com/inward/record.url?scp=0000902612&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000902612&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.59.13741

DO - 10.1103/PhysRevB.59.13741

M3 - Article

AN - SCOPUS:0000902612

SN - 1098-0121

VL - 59

SP - 13741

EP - 13753

JO - Physical Review B - Condensed Matter and Materials Physics

JF - Physical Review B - Condensed Matter and Materials Physics

IS - 21

ER -