Ab initio calculations on etching of graphite and diamond surfaces by atomic hydrogen

Y. Takakuwa, K. Watanabe, C. Kanai

Research output: Contribution to journalArticlepeer-review


Etching of graphite and hydrogenated diamond C(100) (formula presented) surfaces by irradiating atomic hydrogen, which is one of the key reactions to promote epitaxial diamond growth by chemical vapor deposition, has been investigated by ab initio pseudopotential calculations. We demonstrate the reaction pathways and determine the activation energies for breaking C-C bonds on the surfaces by irradiating hydrogen atoms. The activation energy for C-C bond breaking on graphite is found to be only one-half of that on the hydrogenated diamond surface. This indicates that graphite, which is a typical nondiamond phase unnecessarily generated on the diamond surface during epitaxial growth, can be selectively eliminated by atomic hydrogen, resulting in methane desorption. Our result supports the growth rate enhancement in diamond epitaxy observed in a recent experiment by gas-source molecular beam epitaxy under hydrogen beam irradiation.

Original languageEnglish
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number23
Publication statusPublished - 2001 Jan 1
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Ab initio calculations on etching of graphite and diamond surfaces by atomic hydrogen'. Together they form a unique fingerprint.

Cite this