TY - JOUR
T1 - Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli
AU - Morita, Teppei
AU - El-Kazzaz, Waleed
AU - Tanaka, Yuya
AU - Inada, Toshifumi
AU - Aiba, Hiroji
PY - 2003/5/2
Y1 - 2003/5/2
N2 - Previously we found that a mutation in either pgi or pfkA, encoding phosphoglucose isomerase or phosphofructokinase A, respectively, facilitates degradation of the ptsG mRNA in an RNase E-dependent manner in Escherichia coli (1). In this study, we examined the effects of a series of glycolytic genes on the degradation of ptsG mRNA and how the mutations destabilize the ptsG mRNA. The conditional lethal mutation ts8 in fda, encoding fructose-1,6-P2 aldolase just downstream of pfkA in the glycolytic pathway, caused the destabilization of ptsG mRNA at the nonpermissive temperature. Mutations in any other gene did not destabilize the ptsG mRNA; rather, they reduced the ptsG transcription mainly by affecting the cAMP level. The rapid degradation of ptsG mRNA in mutant strains was completely dependent upon the presence of glucose or any one of its compounds, which enter the Embden-Meyerhof glycolytic pathway before the block points. A significant increase in the intracellular glucose-6-P level was observed in the presence of glucose in the pgi strain. An overexpression of glucose-6-phosphate dehydrogenase eliminated both the accumulation and the degradation of ptsG mRNA in the pgi strain. In addition, accumulation of fructose-6-P led to the rapid degradation of ptsG mRNA in a pgi pfkA mutant strain lacking glucose-6-P. We conclude that the RNase E-dependent destabilization of ptsG mRNA occurs in response to accumulation of glucose-6-P or fructose-6-P.
AB - Previously we found that a mutation in either pgi or pfkA, encoding phosphoglucose isomerase or phosphofructokinase A, respectively, facilitates degradation of the ptsG mRNA in an RNase E-dependent manner in Escherichia coli (1). In this study, we examined the effects of a series of glycolytic genes on the degradation of ptsG mRNA and how the mutations destabilize the ptsG mRNA. The conditional lethal mutation ts8 in fda, encoding fructose-1,6-P2 aldolase just downstream of pfkA in the glycolytic pathway, caused the destabilization of ptsG mRNA at the nonpermissive temperature. Mutations in any other gene did not destabilize the ptsG mRNA; rather, they reduced the ptsG transcription mainly by affecting the cAMP level. The rapid degradation of ptsG mRNA in mutant strains was completely dependent upon the presence of glucose or any one of its compounds, which enter the Embden-Meyerhof glycolytic pathway before the block points. A significant increase in the intracellular glucose-6-P level was observed in the presence of glucose in the pgi strain. An overexpression of glucose-6-phosphate dehydrogenase eliminated both the accumulation and the degradation of ptsG mRNA in the pgi strain. In addition, accumulation of fructose-6-P led to the rapid degradation of ptsG mRNA in a pgi pfkA mutant strain lacking glucose-6-P. We conclude that the RNase E-dependent destabilization of ptsG mRNA occurs in response to accumulation of glucose-6-P or fructose-6-P.
UR - http://www.scopus.com/inward/record.url?scp=0037844900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037844900&partnerID=8YFLogxK
U2 - 10.1074/jbc.M300177200
DO - 10.1074/jbc.M300177200
M3 - Article
C2 - 12578824
AN - SCOPUS:0037844900
SN - 0021-9258
VL - 278
SP - 15608
EP - 15614
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -