Accurate asynchronous network-on-chip simulation based on a delay-aware model

Naoya Onizawa, Tomoyoshi Funazaki, Atsushi Matsumoto, Takahiro Hanyu

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

1 Citation (Scopus)


A performance-evaluation simulator, such as a cycle-accurate simulator, is a key tool for exploring appropriate asynchronous Network-on-Chip (NoC) architectures in early stages of VLSI design, but its accuracy is insufficient in practical VLSI implementation. In this paper, a highly accurate performance-evaluation simulator based on a delay-aware model is proposed for implementing an appropriate asynchronous NoC system. While the unit delay between circuit blocks at every pipeline stage is constant in the conventional cycle-accurate simulator, which causes poor accuracy, the unit delay between circuit blocks in the proposed approach is determined independently by its desirable logic function. The use of this "delay-aware" model makes it accurate to simulate asynchronous NoC systems. As a design example, a 16-core asynchronous Spidergon NoC system is simulated by the conventional cycle-accurate and the proposed simulator whose results, such as latency and throughput, are validated with a highly precise transistor-level simulation result. As a result, the proposed simulator achieves almost the same accuracy as one of the transistor-level simulators with the simulation speed comparable to the cycle-accurate simulator.

Original languageEnglish
Title of host publicationVLSI 2010 Annual Symposium
Subtitle of host publicationSelected papers
EditorsNikolaos Voros, Amar Mukherjee, Nicolas Sklavos, Konstantinos Masselos, Michael Huebner
Number of pages14
Publication statusPublished - 2011

Publication series

NameLecture Notes in Electrical Engineering
Volume105 LNEE
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119


Dive into the research topics of 'Accurate asynchronous network-on-chip simulation based on a delay-aware model'. Together they form a unique fingerprint.

Cite this