TY - JOUR
T1 - Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films
AU - Sato, Takuma
AU - Tsukamoto, Mayu
AU - Yamamoto, Shunsuke
AU - Mitsuishi, Masaya
AU - Miyashita, Tokuji
AU - Nagano, Shusaku
AU - Matsui, Jun
N1 - Funding Information:
This work was supported by the Japan Society for the Promotion of Science (JSPS) in the form of Grants-in-Aid for Scientific Research B (26286010), Exploratory Research (26620201), and the Nanotechnology Platform Program (Molecule and Material Synthesis). This study was also supported by the Research Program “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials” within the “Network Joint Research Center for Materials and Devices”.
Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/11/14
Y1 - 2017/11/14
N2 - The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (lAA), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, lAA is too long to form such hydrogen bonding networks. The lAA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.
AB - The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (lAA), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, lAA is too long to form such hydrogen bonding networks. The lAA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.
UR - http://www.scopus.com/inward/record.url?scp=85034091170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034091170&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.7b03160
DO - 10.1021/acs.langmuir.7b03160
M3 - Article
C2 - 29058441
AN - SCOPUS:85034091170
SN - 0743-7463
VL - 33
SP - 12897
EP - 12902
JO - Langmuir
JF - Langmuir
IS - 45
ER -