Action-angle variables for the continuous spectrum of ideal magnetohydrodynamics

M. Hirota, Y. Fukumoto

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Action-angle variables corresponding to singular (or improper) eigenmodes are rigorously formulated for the Alfv́n and slow (or cusp) continuous spectra of ideal magnetohydrodynamics. The perturbation energy is then transformed into the normal form, namely, the eigenfrequency multiplied by the action variable. It is shown that the Laplace transform approach expedites this action-angle formulation more efficiently than the existing ones devoted to other kinds of continuous spectra. The presence of flow that is either nonparallel to the magnetic field or supersonic at some places brings about singular eigenmodes with negative energy. The Alfv́n and slow singular eigenmodes are neutrally stable even in the presence of any external potential fields, but may cause instability when coupled with another singular or nonsingular eigenmode with the opposite sign of energy.

Original languageEnglish
Article number122101
JournalPhysics of Plasmas
Volume15
Issue number12
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Action-angle variables for the continuous spectrum of ideal magnetohydrodynamics'. Together they form a unique fingerprint.

Cite this