TY - CHAP
T1 - Activation of Hydrogen Peroxide by Polyoxometalates
AU - Mizuno, Noritaka
AU - Yamaguchi, Kazuya
AU - Kamata, Keigo
AU - Nakagawa, Yoshinao
PY - 2008
Y1 - 2008
N2 - Numerous catalytic H2O2-based oxidation reactions by polyoxometalates (POMs) have been developed. POMs for H2O2-based oxidations can be classified into three groups from the standpoints of their structures and H2O2 activation properties: di- and tetranuclear small peroxotungstates, lacunary polyoxotungstates, and transition-metal-substituted POMs. This chapter focuses on the activation of H2O2 on the basis of groups small peroxotungstates and lacunary polyoxotungstates including reaction mechanisms. In recent studies on the catalyst design of POMs showed that various POMs and peroxotungstate could be used as effective catalysts for selective oxygen transfer reactions, such as epoxidation, sulfoxidation, and Baeyer-Villiger oxidation. The high efficiency of H2O2 utilization, which means that negligible decomposition of H2O2 occurs to form molecular oxygen, reduces by-product formation and the risk of building an explosive atmosphere, and leads to the simple, efficient, and safe oxidation processes. For the present epoxidation and sulfoxidation with H2O2, the catalytically active sites play an important role in the activation of H2O2. The reaction of the catalyst with H2O2 results in the generation of the active species which may be hydroperoxo or bridging peroxo species. These electrophilic active oxygen species attack the C=C double bond of olefins to give the corresponding epoxide with high selectivity and efficient H2O2 utilization. In addition, unique stereospecificity, diastereoselectivity, and regioselectivity are observed due to the sterically hindered active oxygen species embedded in the POM frameworks.
AB - Numerous catalytic H2O2-based oxidation reactions by polyoxometalates (POMs) have been developed. POMs for H2O2-based oxidations can be classified into three groups from the standpoints of their structures and H2O2 activation properties: di- and tetranuclear small peroxotungstates, lacunary polyoxotungstates, and transition-metal-substituted POMs. This chapter focuses on the activation of H2O2 on the basis of groups small peroxotungstates and lacunary polyoxotungstates including reaction mechanisms. In recent studies on the catalyst design of POMs showed that various POMs and peroxotungstate could be used as effective catalysts for selective oxygen transfer reactions, such as epoxidation, sulfoxidation, and Baeyer-Villiger oxidation. The high efficiency of H2O2 utilization, which means that negligible decomposition of H2O2 occurs to form molecular oxygen, reduces by-product formation and the risk of building an explosive atmosphere, and leads to the simple, efficient, and safe oxidation processes. For the present epoxidation and sulfoxidation with H2O2, the catalytically active sites play an important role in the activation of H2O2. The reaction of the catalyst with H2O2 results in the generation of the active species which may be hydroperoxo or bridging peroxo species. These electrophilic active oxygen species attack the C=C double bond of olefins to give the corresponding epoxide with high selectivity and efficient H2O2 utilization. In addition, unique stereospecificity, diastereoselectivity, and regioselectivity are observed due to the sterically hindered active oxygen species embedded in the POM frameworks.
UR - http://www.scopus.com/inward/record.url?scp=84887509316&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887509316&partnerID=8YFLogxK
U2 - 10.1016/B978-0-444-53188-9.00004-3
DO - 10.1016/B978-0-444-53188-9.00004-3
M3 - Chapter
AN - SCOPUS:84887509316
SN - 9780444531889
SP - 155
EP - 176
BT - Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis
PB - Elsevier
ER -