Activation of Hydrogen Peroxide by Polyoxometalates

Noritaka Mizuno, Kazuya Yamaguchi, Keigo Kamata, Yoshinao Nakagawa

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

13 Citations (Scopus)

Abstract

Numerous catalytic H2O2-based oxidation reactions by polyoxometalates (POMs) have been developed. POMs for H2O2-based oxidations can be classified into three groups from the standpoints of their structures and H2O2 activation properties: di- and tetranuclear small peroxotungstates, lacunary polyoxotungstates, and transition-metal-substituted POMs. This chapter focuses on the activation of H2O2 on the basis of groups small peroxotungstates and lacunary polyoxotungstates including reaction mechanisms. In recent studies on the catalyst design of POMs showed that various POMs and peroxotungstate could be used as effective catalysts for selective oxygen transfer reactions, such as epoxidation, sulfoxidation, and Baeyer-Villiger oxidation. The high efficiency of H2O2 utilization, which means that negligible decomposition of H2O2 occurs to form molecular oxygen, reduces by-product formation and the risk of building an explosive atmosphere, and leads to the simple, efficient, and safe oxidation processes. For the present epoxidation and sulfoxidation with H2O2, the catalytically active sites play an important role in the activation of H2O2. The reaction of the catalyst with H2O2 results in the generation of the active species which may be hydroperoxo or bridging peroxo species. These electrophilic active oxygen species attack the C=C double bond of olefins to give the corresponding epoxide with high selectivity and efficient H2O2 utilization. In addition, unique stereospecificity, diastereoselectivity, and regioselectivity are observed due to the sterically hindered active oxygen species embedded in the POM frameworks.

Original languageEnglish
Title of host publicationMechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis
PublisherElsevier
Pages155-176
Number of pages22
ISBN (Print)9780444531889
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Activation of Hydrogen Peroxide by Polyoxometalates'. Together they form a unique fingerprint.

Cite this