TY - JOUR
T1 - Activation of Matrix Metalloproteinases by Peroxynitrite-induced Protein S-Glutathiolation via Disulfide S-Oxide Formation
AU - Okamoto, Tatsuya
AU - Akaike, Takaaki
AU - Sawa, Tomohiro
AU - Miyamoto, Yoichi
AU - Van der Vliet, Albert
AU - Maeda, Hiroshi
PY - 2001/8/3
Y1 - 2001/8/3
N2 - Oxidative stress may cause tissue injury through activation of the precursors of matrix metalloproteinase (proMMPs). In this study, we observed glutathione (GSH)-dependent proMMP activation induced by peroxynitrite, a potent oxidizing agent formed during inflammatory processes. Peroxynitrite strongly activated all three types of purified human proMMPs (proMMP-1, -8, and -9) in the presence of similar concentrations of GSH. Of the potential reaction products between peroxynitrite and GSH, only S-nitroglutathione (GSNO 2) caused proMMP activation. Extensive S-glutathiolation of the proMMP protein occurred during activation of proMMP by peroxynitrite and GSH, as shown by radiolabeling studies with [35S]GSH of [ 3H]GSH. Evidence of appreciable S-glutathiolation persisted even after dithiothreitol and protein-denaturing treatment, however, suggesting that some S-glutathiolation did not occur through formation of simple mixed disulfide. Matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry indicated that not only peroxynitrite plus GSH but also synthetic GSNO2 produced dithiothreitol-resistant S-glutathiolation of the synthetic peptide PRCGVPD, which is a well conserved Cys-containing sequence of the propeptide autoinhibitory domain of proMMPs. PRCGVPD S-glutathiolation is presumed to be formed through glutathione disulfide S-oxide (GS(O)SR), based on the m/z 1064. Our results illustrate a unique mechanism of oxidative proMMP activation and oxidative tissue injury during inflammation.
AB - Oxidative stress may cause tissue injury through activation of the precursors of matrix metalloproteinase (proMMPs). In this study, we observed glutathione (GSH)-dependent proMMP activation induced by peroxynitrite, a potent oxidizing agent formed during inflammatory processes. Peroxynitrite strongly activated all three types of purified human proMMPs (proMMP-1, -8, and -9) in the presence of similar concentrations of GSH. Of the potential reaction products between peroxynitrite and GSH, only S-nitroglutathione (GSNO 2) caused proMMP activation. Extensive S-glutathiolation of the proMMP protein occurred during activation of proMMP by peroxynitrite and GSH, as shown by radiolabeling studies with [35S]GSH of [ 3H]GSH. Evidence of appreciable S-glutathiolation persisted even after dithiothreitol and protein-denaturing treatment, however, suggesting that some S-glutathiolation did not occur through formation of simple mixed disulfide. Matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry indicated that not only peroxynitrite plus GSH but also synthetic GSNO2 produced dithiothreitol-resistant S-glutathiolation of the synthetic peptide PRCGVPD, which is a well conserved Cys-containing sequence of the propeptide autoinhibitory domain of proMMPs. PRCGVPD S-glutathiolation is presumed to be formed through glutathione disulfide S-oxide (GS(O)SR), based on the m/z 1064. Our results illustrate a unique mechanism of oxidative proMMP activation and oxidative tissue injury during inflammation.
UR - http://www.scopus.com/inward/record.url?scp=0035800858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035800858&partnerID=8YFLogxK
U2 - 10.1074/jbc.M102417200
DO - 10.1074/jbc.M102417200
M3 - Article
C2 - 11395496
AN - SCOPUS:0035800858
SN - 0021-9258
VL - 276
SP - 29596
EP - 29602
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -