TY - JOUR
T1 - Adsorption and thermal decomposition of benzene on the Pd(110)(1X2)-Cs surface
T2 - High-resolution electron energy loss spectroscopy, thermal desorption, and low-energy electron diffraction studies
AU - Fujisawa, M.
AU - Takaoka, T.
AU - Sekitani, T.
AU - Nishijima, M.
PY - 1992
Y1 - 1992
N2 - The adsorbed state of benzene on the Pd(110)(1X2)-Cs surface at 90 K and its thermal decomposition process in the temperature region up to 650 K have been investigated by using high-resolution electron energy loss spectroscopy, multiplexed thermal desorption spectroscopy, and low-energy electron diffraction. Vibrational spectra show the existence of two chemisorbed states of benzene on Pd(110)(1X2)-Cs at 90 K. For a small exposure (≲0.3 langmuir, fractional coverage θC6H6 ≲ 0.07), benzene is predominantly adsorbed away from the Cs adatoms. With increasing exposure, the adsorbed benzene located near the Cs adatoms is formed additionally. The saturation coverage corresponds to 0.2 C6H6 molecule per Pd atom of the unreconstructed Pd(110) surface (θC6H6 = 0.2). For large exposure (>0.3 langmuir), a part of the adsorbed benzene is desorbed intact at about 300 and 330 K. The thermal decomposition of C6H6 occurs above 300 K, and the CxHy species (x = 1 or ≥3, y = 0, 1) and H atoms are formed on the surface. Only carbon adatoms remain on the Pd(110)(1X2)-Cs surface by heating to 650 K. These results are compared with those for the Pd(110) clean surface, and the effect of Cs adatoms on the surface reactions are discussed.
AB - The adsorbed state of benzene on the Pd(110)(1X2)-Cs surface at 90 K and its thermal decomposition process in the temperature region up to 650 K have been investigated by using high-resolution electron energy loss spectroscopy, multiplexed thermal desorption spectroscopy, and low-energy electron diffraction. Vibrational spectra show the existence of two chemisorbed states of benzene on Pd(110)(1X2)-Cs at 90 K. For a small exposure (≲0.3 langmuir, fractional coverage θC6H6 ≲ 0.07), benzene is predominantly adsorbed away from the Cs adatoms. With increasing exposure, the adsorbed benzene located near the Cs adatoms is formed additionally. The saturation coverage corresponds to 0.2 C6H6 molecule per Pd atom of the unreconstructed Pd(110) surface (θC6H6 = 0.2). For large exposure (>0.3 langmuir), a part of the adsorbed benzene is desorbed intact at about 300 and 330 K. The thermal decomposition of C6H6 occurs above 300 K, and the CxHy species (x = 1 or ≥3, y = 0, 1) and H atoms are formed on the surface. Only carbon adatoms remain on the Pd(110)(1X2)-Cs surface by heating to 650 K. These results are compared with those for the Pd(110) clean surface, and the effect of Cs adatoms on the surface reactions are discussed.
UR - http://www.scopus.com/inward/record.url?scp=33751392675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751392675&partnerID=8YFLogxK
U2 - 10.1021/j100190a085
DO - 10.1021/j100190a085
M3 - Article
AN - SCOPUS:33751392675
SN - 0022-3654
VL - 96
SP - 4602
EP - 4608
JO - Journal of Physical Chemistry
JF - Journal of Physical Chemistry
IS - 11
ER -