TY - JOUR
T1 - Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum
AU - Sudtachat, Nirinya
AU - Ito, Naofumi
AU - Itakura, Manabu
AU - Masuda, Sachiko
AU - Eda, Shima
AU - Mitsui, Hisayuki
AU - Kawaharada, Yasuyuki
AU - Minamisawa, Kiwamu
N1 - Funding Information:
We appreciate comments by Jos Lelieveld, Henning Rodhe, and Yves Balkanski which helped improve this manuscript. We acknowledge Phil Rasch for the use of MATCH and for earlier discussions about wet deposition scheme formulations. Comments from two anonymous referees helped improve this manuscript. Support for this work was provided in part by the EU SINDICATE project.
PY - 2009/8
Y1 - 2009/8
N2 - Bradyrhizobium japonicum, a symbiotic nitrogen-fixing soil bacterium, has multiple gene copies for aromatic degradation on the genome and is able to use low concentrations of vanillate, a methoxylated lignin monomer, as an energy source. A transcriptome analysis indicated that one set of vanA1B, pcaG1H1, and genes for C1 compound catabolism was upregulated in B. japonicum USDA110 cells grown in vanillate (N. Ito, M. Itakura, S. Eda, K. Saeki, H. Oomori, T. Yokoyama, T. Kaneko, S. Tabata, T. Ohwada, S. Tajima, T. Uchiumi, E. Masai, M. Tsuda, H. Mitsui, and K. Minamisawa, Microbes Environ. 21:240-250, 2006). To examine the functions of these genes in vanillate degradation, we tested cell growth and substrate consumption in vanA1B, pcaG1H1, and mxaF mutants of USDA110. The vanA1B and pcaG1H1 mutants were unable to grow in minimal media containing 1 mM vanillate and protocatechuate, respectively, although wild-type USDA110 was able to grow in both media, indicating that the upregulated copies of vanA1B and pcaG1H1 are exclusively responsible for vanillate degradation. Mutating mxaF eliminated expression of gfa and flhA, which contribute to glutathione-dependent C1 metabolism. The mxaF mutant had markedly lower cell growth in medium containing vanillate than the wild-type strain. In the presence of protocatechuate, there was no difference in cell growth between the mxaF mutant and the wild-type strain. These results suggest that the C1 pathway genes are required for efficient vanillate catabolism. In addition, wild-type USDA110 oxidized methanol, whereas the mxaF mutant did not, suggesting that the metabolic capability of the C 1 pathway in B. japonicum extends to methanol oxidation. The mxaF mutant showed normal nodulation and N2 fixation phenotypes with soybeans, which was not similar to symbiotic phenotypes of methylotrophic rhizobia.
AB - Bradyrhizobium japonicum, a symbiotic nitrogen-fixing soil bacterium, has multiple gene copies for aromatic degradation on the genome and is able to use low concentrations of vanillate, a methoxylated lignin monomer, as an energy source. A transcriptome analysis indicated that one set of vanA1B, pcaG1H1, and genes for C1 compound catabolism was upregulated in B. japonicum USDA110 cells grown in vanillate (N. Ito, M. Itakura, S. Eda, K. Saeki, H. Oomori, T. Yokoyama, T. Kaneko, S. Tabata, T. Ohwada, S. Tajima, T. Uchiumi, E. Masai, M. Tsuda, H. Mitsui, and K. Minamisawa, Microbes Environ. 21:240-250, 2006). To examine the functions of these genes in vanillate degradation, we tested cell growth and substrate consumption in vanA1B, pcaG1H1, and mxaF mutants of USDA110. The vanA1B and pcaG1H1 mutants were unable to grow in minimal media containing 1 mM vanillate and protocatechuate, respectively, although wild-type USDA110 was able to grow in both media, indicating that the upregulated copies of vanA1B and pcaG1H1 are exclusively responsible for vanillate degradation. Mutating mxaF eliminated expression of gfa and flhA, which contribute to glutathione-dependent C1 metabolism. The mxaF mutant had markedly lower cell growth in medium containing vanillate than the wild-type strain. In the presence of protocatechuate, there was no difference in cell growth between the mxaF mutant and the wild-type strain. These results suggest that the C1 pathway genes are required for efficient vanillate catabolism. In addition, wild-type USDA110 oxidized methanol, whereas the mxaF mutant did not, suggesting that the metabolic capability of the C 1 pathway in B. japonicum extends to methanol oxidation. The mxaF mutant showed normal nodulation and N2 fixation phenotypes with soybeans, which was not similar to symbiotic phenotypes of methylotrophic rhizobia.
UR - http://www.scopus.com/inward/record.url?scp=67651247621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67651247621&partnerID=8YFLogxK
U2 - 10.1128/AEM.00755-09
DO - 10.1128/AEM.00755-09
M3 - Article
C2 - 19502448
AN - SCOPUS:67651247621
SN - 0099-2240
VL - 75
SP - 5012
EP - 5017
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 15
ER -