Agonist-Dependent Coupling of the Promiscuous Adenosine A2BReceptor to Gα Protein Subunits

Jan Hendrik Voss, Andhika B. Mahardhika, Asuka Inoue, Christa E. Müller

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The adenosine A2B receptor (A2BAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family. It is upregulated under hypoxic conditions, in inflammation and cancer. Previous studies indicated the coupling of the A2BAR to different G proteins, mainly Gs, but in some cases Gq/11 or Gi, depending on the cell type. We have now utilized novel technologies, (i) heterologous expression of individual members of the Gαq/11 protein family (Gαq, Gα11, Gα14, and Gα15) in Gαq/11 knockout cells, and (ii) the TRUPATH platform, allowing the direct observation of Gα protein activation for each of the Gα subunits by bioluminescence resonance energy transfer (BRET) measurements. Three structurally diverse A2BAR agonists were studied: The cognate agonist adenosine, its metabolically stable analog NECA, and the non-nucleosidic partial agonist BAY 60-6583. Adenosine and NECA activated most members of all four Gα protein families (Gαs, Gαq/11, Gαi, and Gα12/13). Significant differences in potencies and efficacies were observed; the highest efficacies were determined at the Gα15, Gαs, and Gα12 proteins, and for NECA additionally at the Gαi2 protein. In contrast, the partial agonist BAY 60-6583 only activated Gα15, Gαs, and Gα12 proteins. Adenosine deaminase, an allosteric modulator of ARs, selectively increased the potency and efficacy of NECA and BAY 60-6583 at the Gα15 protein, while it had no effect or decreased efficacy at the other Gα proteins. We conclude that the A2BAR is preferably coupled to the Gα15, Gαs, and Gα12 proteins. Upon upregulation of receptor or Gα protein expression, coupling to further Gα proteins likely occurs. Importantly, different agonists can display different activation profiles.

Original languageEnglish
JournalACS Pharmacology and Translational Science
Publication statusAccepted/In press - 2022


  • adenosine
  • BAY 60-6583
  • G protein coupling
  • G/G/G/Gproteins
  • HEK293 cells
  • NECA

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)


Dive into the research topics of 'Agonist-Dependent Coupling of the Promiscuous Adenosine A2BReceptor to Gα Protein Subunits'. Together they form a unique fingerprint.

Cite this