All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

M. Kohda, P. Altmann, D. Schuh, S. D. Ganichev, W. Wegscheider, G. Salis

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

Original languageEnglish
Article number172402
JournalApplied Physics Letters
Volume107
Issue number17
DOIs
Publication statusPublished - 2015 Oct 26

Fingerprint

Dive into the research topics of 'All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas'. Together they form a unique fingerprint.

Cite this