ALMA Observations of the Protostar L1527 IRS: Probing Details of the Disk and the Envelope Structures

Yusuke Aso, Nagayoshi Ohashi, Yuri Aikawa, Masahiro N. Machida, Kazuya Saigo, Masao Saito, Shigehisa Takakuwa, Kengo Tomida, Kohji Tomisaka, Hsi Wei Yen

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)


We have recently observed the Class 0/I protostar L1527 IRS using the Atacama Large Millimeter/submillimeter Array (ALMA) during its Cycle 1 in 220 GHz dust continuum and C18O line emissions with a ∼2 times higher angular resolution and ∼4 times better sensitivity than our ALMA Cycle 0 observations. Continuum emission shows elongation perpendicular to the associated outflow, with a deconvolved size of C18O emission shows similar elongation, indicating that both emissions trace the disk and the flattened envelope surrounding the protostar. The velocity gradient of the C18O emission along the elongation due to rotation of the disk/envelope system is reanalyzed, identifying Keplerian rotation proportional to more clearly than the Cycle 0 observations. The Keplerian-disk radius and the dynamical stellar mass are kinematically estimated to be ∼74 au and , respectively. The continuum visibility is fitted by models without any annulus averaging, revealing that the disk is in hydrostatic equilibrium. The best-fit model also suggests a density jump by a factor of ∼5 between the disk and the envelope, suggesting that disks around protostars can be geometrically distinguishable from the envelope from a viewpoint of density contrast. Importantly, the disk radius geometrically identified with the density jump is consistent with the kinematically estimated radius. Possible origin of the density jump due to the mass accretion from the envelope to the disk is discussed. C18O observations can be reproduced by the same geometrical structures derived from the dust observations, with possible C18O freeze-out and localized C18O desorption.

Original languageEnglish
Article number56
JournalAstrophysical Journal
Issue number1
Publication statusPublished - 2017 Nov 1


  • circumstellar matter
  • stars: individual (L1527 IRS)
  • stars: low-mass
  • stars: protostars


Dive into the research topics of 'ALMA Observations of the Protostar L1527 IRS: Probing Details of the Disk and the Envelope Structures'. Together they form a unique fingerprint.

Cite this