TY - JOUR
T1 - Altered DARPP-32 expression in the superior temporal gyrus in schizophrenia
AU - Kunii, Yasuto
AU - Yabe, Hirooki
AU - Wada, Akira
AU - Yang, Qiaohui
AU - Nishiura, Keisuke
AU - Niwa, Shin ichi
N1 - Funding Information:
This study was supported by a Grant-in-Aid for Scientific Research (grant number: 20390315 ) from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for clinical research from the Research Group for Schizophrenia .
PY - 2011/6/1
Y1 - 2011/6/1
N2 - Many neuroimaging studies have revealed structural abnormalities in the superior temporal gyrus (STG) in schizophrenia (Kasai et al., 2003a, 2003b; Sun et al., 2009). Neurophysiological studies of mismatch negativities (MMN) generated in the STG have suggested impaired function of N-methyl-d-aspartate (NMDA) receptors (Javitt et al., 1996). Although many postmortem studies have been conducted on the pathogenesis of schizophrenia, relatively few reports have studied molecular alterations in the STG (Bowden et al., 2008; Deng and Huang, 2006; Kang et al., 2009; Katsel et al., 2005; Le Corre et al., 2000; Nudmamud and Reynolds, 2001; Sokolov et al., 2000). The STG shows pronounced changes in gene expression when compared to other regions implicated in schizophrenia (Katsel et al., 2005). Dopamine and a cAMP-regulated phosphoprotein of molecular weight 32. kDa (DARPP-32) is thought to be closely associated with pathophysiological changes in the dopamine and glutamate systems in schizophrenia because, when activated by phosphorylation, DARPP-32 acts as a critical regulator of D1 dopamine receptor and NMDA receptor activity (Greengard et al., 1999). The molecular pathways involving DARPP-32 appear important in the pathogenesis of schizophrenia. Here, we show dramatic alterations in DARPP-32 expression in the STG of postmortem brains from patients with schizophrenia. To clarify the detailed histological and cellular expression of DARPP-32 in the STG in schizophrenia, we immunohistochemically examined postmortem brains by using specific antibodies. We compared the density of immunoreactive cells of the STG (BA22) from 11 schizophrenia patients with those from 11 age- and sex-matched controls, and found significantly lower densities of DARPP-32-immunoreactive (IR) cells and threonine (Thr) 34-phosphorylated DARPP-32-IR cells in the STG in the schizophrenia group. Thus, the DARPP-32-related pathogenesis in schizophrenia may be more severe in the STG than previously found in the prefrontal cortex.
AB - Many neuroimaging studies have revealed structural abnormalities in the superior temporal gyrus (STG) in schizophrenia (Kasai et al., 2003a, 2003b; Sun et al., 2009). Neurophysiological studies of mismatch negativities (MMN) generated in the STG have suggested impaired function of N-methyl-d-aspartate (NMDA) receptors (Javitt et al., 1996). Although many postmortem studies have been conducted on the pathogenesis of schizophrenia, relatively few reports have studied molecular alterations in the STG (Bowden et al., 2008; Deng and Huang, 2006; Kang et al., 2009; Katsel et al., 2005; Le Corre et al., 2000; Nudmamud and Reynolds, 2001; Sokolov et al., 2000). The STG shows pronounced changes in gene expression when compared to other regions implicated in schizophrenia (Katsel et al., 2005). Dopamine and a cAMP-regulated phosphoprotein of molecular weight 32. kDa (DARPP-32) is thought to be closely associated with pathophysiological changes in the dopamine and glutamate systems in schizophrenia because, when activated by phosphorylation, DARPP-32 acts as a critical regulator of D1 dopamine receptor and NMDA receptor activity (Greengard et al., 1999). The molecular pathways involving DARPP-32 appear important in the pathogenesis of schizophrenia. Here, we show dramatic alterations in DARPP-32 expression in the STG of postmortem brains from patients with schizophrenia. To clarify the detailed histological and cellular expression of DARPP-32 in the STG in schizophrenia, we immunohistochemically examined postmortem brains by using specific antibodies. We compared the density of immunoreactive cells of the STG (BA22) from 11 schizophrenia patients with those from 11 age- and sex-matched controls, and found significantly lower densities of DARPP-32-immunoreactive (IR) cells and threonine (Thr) 34-phosphorylated DARPP-32-IR cells in the STG in the schizophrenia group. Thus, the DARPP-32-related pathogenesis in schizophrenia may be more severe in the STG than previously found in the prefrontal cortex.
KW - DARPP-32
KW - Mismatch negativities
KW - Postmortem
KW - Schizophrenia
KW - Superior temporal gyrus
UR - http://www.scopus.com/inward/record.url?scp=79956037146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79956037146&partnerID=8YFLogxK
U2 - 10.1016/j.pnpbp.2011.03.016
DO - 10.1016/j.pnpbp.2011.03.016
M3 - Article
C2 - 21453742
AN - SCOPUS:79956037146
SN - 0278-5846
VL - 35
SP - 1139
EP - 1143
JO - Progress in Neuro-Psychopharmacology and Biological Psychiatry
JF - Progress in Neuro-Psychopharmacology and Biological Psychiatry
IS - 4
ER -