TY - JOUR
T1 - Amelioration of renal alterations in obese type 2 diabetic mice by vasohibin-1, a negative feedback regulator of angiogenesis
AU - Saito, Daisuke
AU - Maeshima, Yohei
AU - Nasu, Tatsuyo
AU - Yamasaki, Hiroko
AU - Abe, Katsuyuki
AU - Sugiyama, Hitoshi
AU - Sonoda, Hikaru
AU - Sato, Yasufumi
AU - Makino, Hirofumi
PY - 2011/4/1
Y1 - 2011/4/1
N2 - The involvement of VEGF-A as well as the therapeutic efficacy of angiogenesis inhibitors in diabetic nephropathy have been reported. We recently reported the therapeutic effects of vasohibin-1 (VASH-1), an endogenous angiogenesis inhibitor, in a type 1 diabetic nephropathy model (Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Diabetes 58: 2365-2375, 2009). In this study, we investigated the therapeutic efficacy of VASH-1 on renal alterations in obese mice with type 2 diabetes. Diabetic db/db mice received intravenous injections of adenoviral vectors encoding human VASH-1 (AdhVASH-1) and were euthanized 8 wk later. AdhVASH-1 treatment resulted in significant suppression of glomerular hypertrophy, glomerular hyperfiltration, albuminuria, increase in the CD31+ glomerular endothelial area, F4/80+ monocyte/macrophage infiltration, the accumulation of type IV collagen, and mesangial matrix. An increase in the renal levels of VEGF-A, VEGFR-2, transforming growth factor (TGF)-(31, and monocyte chemoattractant protein-1 in diabetic animals was significantly suppressed by AdhVASH-1 (immunoblotting). AdhVASH-1 treatment significantly recovered the loss and altered the distribution patterns of nephrin and zonula occludens (ZO)-1 and suppressed the increase in the number of fibroblast-specific protein-1 (FSP-1+) and desmin+ podocytes in diabetic mice. In vitro, recombinant human VASH-1 (rhVASH-1) dose dependently suppressed the upregulation of VEGF induced by high ambient glucose (25 mM) in cultured mouse podocytes. In addition, rhVASH-1 significantly recovered the mRNA levels of nephrin and the protein levels of ZO-1 and P-cadherin and suppressed the increase in protein levels of desmin, FSP-1, Snail, and Slug in podocytes under high-glucose condition. Taken together, these results suggest the potential use of VASH-1 as a novel therapeutic agent in type 2 diabetic nephropathy mediated via antiangiogenic effects and maintenance of podocyte phenotype in association with antiproteinuric effects.
AB - The involvement of VEGF-A as well as the therapeutic efficacy of angiogenesis inhibitors in diabetic nephropathy have been reported. We recently reported the therapeutic effects of vasohibin-1 (VASH-1), an endogenous angiogenesis inhibitor, in a type 1 diabetic nephropathy model (Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Diabetes 58: 2365-2375, 2009). In this study, we investigated the therapeutic efficacy of VASH-1 on renal alterations in obese mice with type 2 diabetes. Diabetic db/db mice received intravenous injections of adenoviral vectors encoding human VASH-1 (AdhVASH-1) and were euthanized 8 wk later. AdhVASH-1 treatment resulted in significant suppression of glomerular hypertrophy, glomerular hyperfiltration, albuminuria, increase in the CD31+ glomerular endothelial area, F4/80+ monocyte/macrophage infiltration, the accumulation of type IV collagen, and mesangial matrix. An increase in the renal levels of VEGF-A, VEGFR-2, transforming growth factor (TGF)-(31, and monocyte chemoattractant protein-1 in diabetic animals was significantly suppressed by AdhVASH-1 (immunoblotting). AdhVASH-1 treatment significantly recovered the loss and altered the distribution patterns of nephrin and zonula occludens (ZO)-1 and suppressed the increase in the number of fibroblast-specific protein-1 (FSP-1+) and desmin+ podocytes in diabetic mice. In vitro, recombinant human VASH-1 (rhVASH-1) dose dependently suppressed the upregulation of VEGF induced by high ambient glucose (25 mM) in cultured mouse podocytes. In addition, rhVASH-1 significantly recovered the mRNA levels of nephrin and the protein levels of ZO-1 and P-cadherin and suppressed the increase in protein levels of desmin, FSP-1, Snail, and Slug in podocytes under high-glucose condition. Taken together, these results suggest the potential use of VASH-1 as a novel therapeutic agent in type 2 diabetic nephropathy mediated via antiangiogenic effects and maintenance of podocyte phenotype in association with antiproteinuric effects.
KW - Podocyte
KW - Proteinuria
UR - http://www.scopus.com/inward/record.url?scp=79954466760&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79954466760&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00503.2010
DO - 10.1152/ajprenal.00503.2010
M3 - Article
C2 - 21228103
AN - SCOPUS:79954466760
SN - 1931-857X
VL - 300
SP - 873
EP - 886
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 4
ER -