TY - JOUR
T1 - Amiloride-sensitive Na+/H+ antiporter in basolateral membrane of hamster ascending thin limb of Henle's loop
AU - Fujiwara, Ikuma
AU - Kondo, Yoshiaki
AU - Igarashi, Yutaka
AU - Inoue, Chiyoko N.
AU - Takahashi, Nobuyuki
AU - Tada, Keiya
AU - Abe, Keishi
PY - 1995/3
Y1 - 1995/3
N2 - The mechanisms of intracellular pH (pHi) regulation were investigated in the in vitro microperfused hamster ascending thin limb (ATL) of Henle's loop with the fluorescent pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. pHi of ATL cells was 7.05 ± 0.02 (n = 30) when microperfused with a CO2/HCO-3-buffered solution. In HEPES-buffered solution, pHi was 7.10 ± 0.02 (n = 16), which was significantly higher than the value in CO2/ HCO-3-buffered solution (P < 0.05, n = 16). In HEPES-buffered solution, elimination of Na+ and addition of 1 mM amiloride to basolateral solution decreased the pHi by 0.12 ± 0.03 (n = 6) and 0.11 ± 0.02 (n = 5) at 1 min, respectively. The same manipulations in the luminal solution had no effect on pHi. One millimolar of N-ethylmaleimide (NEM) added to either side of ATL caused no significant change in pHi. Elimination of K+ on either side of ATL did not alter pHi. After adding 20 mM NH4Cl to basolateral solution, pHi instantaneously increased from 7.17 ± 0.01 to 7.51 ± 0.03 (n = 3), and then returned to steady-state level of 7.21 ± 0.05 (n = 15) in 3 min. Removal of NH4Cl from basolateral solution then caused a rapid fall in pHi to 6.31 ± 0.05 (n = 15), followed by spontaneous recovery at a rate of 0.43 ± 0.06 unit/min (n = 15). In presence of 1 mM amiloride in basolateral solution, NH4Cl removal caused a fall in pHi to 6.10 ± 0.05 (n = 6), followed by a recovery at a rate of 0.14 ± 0.03 unit/min (n = 6), significantly smaller than that in absence of amiloride. In absence of Na+ in basolateral solution, NH4Cl removal caused a fall in the pHi to 6.22 ± 0.06 (n = 5), followed by a recovery at a rate of 0.05 ± 0.02 unit/min (n = 5), which is also significantly smaller than that in presence of Na+. In CO2/ HCO-3-buffered solution, 1 mM NEM added either to lumen or to bath did not change pHi, whereas 1 mM amiloride added to bath significantly acidified the ATL cells. We conclude that there is an amiloride-sensitive Na+/H+ antiporter in the basolateral membrane of the ATL, and that this transporter is the main regulatory mechanism of pHi in ATL cells. The results also show that other pH regulatory mechanisms, such as an NEM-sensitive proton pump or H+-K+-adenosinetriphosphatase, may not play a role in pHi regulation from acidification in the ATL.
AB - The mechanisms of intracellular pH (pHi) regulation were investigated in the in vitro microperfused hamster ascending thin limb (ATL) of Henle's loop with the fluorescent pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. pHi of ATL cells was 7.05 ± 0.02 (n = 30) when microperfused with a CO2/HCO-3-buffered solution. In HEPES-buffered solution, pHi was 7.10 ± 0.02 (n = 16), which was significantly higher than the value in CO2/ HCO-3-buffered solution (P < 0.05, n = 16). In HEPES-buffered solution, elimination of Na+ and addition of 1 mM amiloride to basolateral solution decreased the pHi by 0.12 ± 0.03 (n = 6) and 0.11 ± 0.02 (n = 5) at 1 min, respectively. The same manipulations in the luminal solution had no effect on pHi. One millimolar of N-ethylmaleimide (NEM) added to either side of ATL caused no significant change in pHi. Elimination of K+ on either side of ATL did not alter pHi. After adding 20 mM NH4Cl to basolateral solution, pHi instantaneously increased from 7.17 ± 0.01 to 7.51 ± 0.03 (n = 3), and then returned to steady-state level of 7.21 ± 0.05 (n = 15) in 3 min. Removal of NH4Cl from basolateral solution then caused a rapid fall in pHi to 6.31 ± 0.05 (n = 15), followed by spontaneous recovery at a rate of 0.43 ± 0.06 unit/min (n = 15). In presence of 1 mM amiloride in basolateral solution, NH4Cl removal caused a fall in pHi to 6.10 ± 0.05 (n = 6), followed by a recovery at a rate of 0.14 ± 0.03 unit/min (n = 6), significantly smaller than that in absence of amiloride. In absence of Na+ in basolateral solution, NH4Cl removal caused a fall in the pHi to 6.22 ± 0.06 (n = 5), followed by a recovery at a rate of 0.05 ± 0.02 unit/min (n = 5), which is also significantly smaller than that in presence of Na+. In CO2/ HCO-3-buffered solution, 1 mM NEM added either to lumen or to bath did not change pHi, whereas 1 mM amiloride added to bath significantly acidified the ATL cells. We conclude that there is an amiloride-sensitive Na+/H+ antiporter in the basolateral membrane of the ATL, and that this transporter is the main regulatory mechanism of pHi in ATL cells. The results also show that other pH regulatory mechanisms, such as an NEM-sensitive proton pump or H+-K+-adenosinetriphosphatase, may not play a role in pHi regulation from acidification in the ATL.
KW - 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein
KW - Amiloride
KW - Intracellular pH
KW - Renal medulla
KW - Sodium/hydrogen antiport
UR - http://www.scopus.com/inward/record.url?scp=0028904346&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028904346&partnerID=8YFLogxK
M3 - Article
C2 - 7900840
AN - SCOPUS:0028904346
SN - 0363-6127
VL - 268
SP - F410-F415
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 3 37-3
ER -