Abstract
This paper describes an empirical study of high-performance dependency parsers based on a semi-supervised learning approach. We describe an extension of semi-supervised structured conditional models (SS-SCMs) to the dependency parsing problem, whose framework is originally proposed in (Suzuki and Isozaki, 2008). Moreover, we introduce two extensions related to dependency parsing: The first extension is to combine SS-SCMs with another semi-supervised approach, described in (Koo et al., 2008). The second extension is to apply the approach to second-order parsing models, such as those described in (Carreras, 2007), using a two-stage semi-supervised learning approach. We demonstrate the effectiveness of our proposed methods on dependency parsing experiments using two widely used test collections: the Penn Treebank for English, and the Prague Dependency Treebank for Czech. Our best results on test data in the above datasets achieve 93.79% parent-prediction accuracy for English, and 88.05% for Czech.
Original language | English |
---|---|
Pages | 551-560 |
Number of pages | 10 |
DOIs | |
Publication status | Published - 2009 |
Externally published | Yes |
Event | 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Held in Conjunction with ACL-IJCNLP 2009 - Singapore, Singapore Duration: 2009 Aug 6 → 2009 Aug 7 |
Other
Other | 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Held in Conjunction with ACL-IJCNLP 2009 |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 09/8/6 → 09/8/7 |
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems