Abstract
This paper describes a technique of estimating style expressiveness for an arbitrary speaker's emotional speech. In the proposed technique, the style expressiveness, representing how much the emotions and/or speaking styles affect the acoustic features, is estimated based on multiple-regression hidden semi-Markov model (MRHSMM). In the model training, we first train average voice model using multiple speakers' neutral style speech. Then, the speaker- and style-adapted HSMMs are obtained based on linear transformation from the average voice model with a small amount of the target speaker's data. Finally, MRHSMM of the target speaker is obtained using the adapted models. For given input emotional speech, the style expressiveness is estimated based on maximum likelihood criterion. From the experimental results, we show that the estimated value gives good correspondence to the perceptual rating.
Original language | English |
---|---|
Pages (from-to) | 2759-2762 |
Number of pages | 4 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Publication status | Published - 2008 |
Event | INTERSPEECH 2008 - 9th Annual Conference of the International Speech Communication Association - Brisbane, QLD, Australia Duration: 2008 Sept 22 → 2008 Sept 26 |
Keywords
- Emotional expression
- Estimation of expressiveness
- Model adaptation
- Multiple-regression HSMM