TY - GEN
T1 - Analysis of Fast Ionization Wave discharge propagation in a rectangular geometry
AU - Takashima, Keisuke
AU - Adamovich, Igor V.
AU - Xiong, Zhongmin
AU - Kushner, Mark J.
AU - Starikovskaia, Svetlana
AU - Czarnetzki, Uwe
AU - Luggenhölscher, Dirk
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2011
Y1 - 2011
N2 - Fast Ionization Wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel / waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 nsec, voltage rise time ~1 kV/nsec), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
AB - Fast Ionization Wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel / waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 nsec, voltage rise time ~1 kV/nsec), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
UR - http://www.scopus.com/inward/record.url?scp=84884664836&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884664836&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84884664836
SN - 9781624101472
T3 - 42nd AIAA Plasmadynamics and Lasers Conference
BT - 42nd AIAA Plasmadynamics and Lasers Conference
T2 - 42nd AIAA Plasmadynamics and Lasers Conference 2011
Y2 - 27 June 2011 through 30 June 2011
ER -