Analysis of Fast Ionization Wave discharge propagation in a rectangular geometry

Keisuke Takashima, Igor V. Adamovich, Zhongmin Xiong, Mark J. Kushner, Svetlana Starikovskaia, Uwe Czarnetzki, Dirk Luggenhölscher

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Fast Ionization Wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel / waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 nsec, voltage rise time ~1 kV/nsec), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.

Original languageEnglish
Title of host publication42nd AIAA Plasmadynamics and Lasers Conference
Publication statusPublished - 2011
Externally publishedYes
Event42nd AIAA Plasmadynamics and Lasers Conference 2011 - Honolulu, HI, United States
Duration: 2011 Jun 272011 Jun 30

Publication series

Name42nd AIAA Plasmadynamics and Lasers Conference


Conference42nd AIAA Plasmadynamics and Lasers Conference 2011
Country/TerritoryUnited States
CityHonolulu, HI

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Analysis of Fast Ionization Wave discharge propagation in a rectangular geometry'. Together they form a unique fingerprint.

Cite this