Abstract
The anodic dissolution process of Au(111) in a 0.1 M perchloric acid (HClO4) solution containing chloride anion (Cl-) was investigated using an in situ scanning tunneling microscope. The initial dissolution of gold was observed at the step sites when the electrode potentials became more positive than +1.0 V. The rate of the anodic dissolution increased as the potential became more positive. When the potential became more positive than +1.35 V, dissolution on the terraces was also observed. The dissolution of Au(111) anisotropically proceeds in a layer-by-layer mode. Step lines along the [110] direction, which were found in the double-layer region, disappeared, and ones along the [211] direction were newly formed during the dissolution process. The gold surface became rougher when the electrode potential became more positive than +1.45 V, where anodic dissolution and oxide formation simultaneously took place. The gold surface was completely passivated at +1.7 V. The mechanism for the anisotropic dissolution is discussed in relation to the structure of the chloride adlayer on the Au(111) electrode surface.
Original language | English |
---|---|
Pages (from-to) | 807-812 |
Number of pages | 6 |
Journal | Langmuir |
Volume | 15 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1999 Feb 2 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry