TY - JOUR
T1 - Anomalous negative excursion of carbon isotope in organic carbon after the last Paleoproterozoic glaciation in North America
AU - Sekine, Yasuhito
AU - Tajika, Eiichi
AU - Ohkouchi, Naohiko
AU - Ogawa, Nanako O.
AU - Goto, Kazuhisa
AU - Tada, Ryuji
AU - Yamamoto, Shinji
AU - Kirschvink, Joseph L.
PY - 2010/8/1
Y1 - 2010/8/1
N2 - Early Paleoproterozoic time (2.5-2.0 Ga) spanned a critical phase in Earth's history, characterized by repeated glaciations and an increase in atmospheric oxygen (the Great Oxidation Event (GOE)). Following the last and most intense glaciation of this period, marine carbonates record a large positive excursion of δ13C value (termed the "Lomagundi event") between about 2.2 and 2.1 Ga coinciding with the global appearances of red beds and sulfates, which suggest an accumulation of high levels of atmospheric oxygen. Here we report the discovery of large negative excursions of δ13C in organic matter (down to -55‰) from quartzose sandstones (of the Marquette Range and the Huronian Supergroups, North America) intermediate in age between the last Paleoproterozoic glaciation and the possible onset of the Lomagundi event. The negative excursion is concomitant with the appearance of intensely weathered quartzose sandstones, which may represent hot and humid conditions. There are some interpretations that potentially explain the negative excursions: (1) redeposition of older 13C-depleted kerogen, (2) later post-depositional infiltration of oil, (3) active methane productions by methanogens in shallow-marine environments, or (4) dissociation of methane hydrate. If the latter two were the case, they would provide clues for understanding the environmental change connecting the intense glaciation and an increase in oxygen.
AB - Early Paleoproterozoic time (2.5-2.0 Ga) spanned a critical phase in Earth's history, characterized by repeated glaciations and an increase in atmospheric oxygen (the Great Oxidation Event (GOE)). Following the last and most intense glaciation of this period, marine carbonates record a large positive excursion of δ13C value (termed the "Lomagundi event") between about 2.2 and 2.1 Ga coinciding with the global appearances of red beds and sulfates, which suggest an accumulation of high levels of atmospheric oxygen. Here we report the discovery of large negative excursions of δ13C in organic matter (down to -55‰) from quartzose sandstones (of the Marquette Range and the Huronian Supergroups, North America) intermediate in age between the last Paleoproterozoic glaciation and the possible onset of the Lomagundi event. The negative excursion is concomitant with the appearance of intensely weathered quartzose sandstones, which may represent hot and humid conditions. There are some interpretations that potentially explain the negative excursions: (1) redeposition of older 13C-depleted kerogen, (2) later post-depositional infiltration of oil, (3) active methane productions by methanogens in shallow-marine environments, or (4) dissociation of methane hydrate. If the latter two were the case, they would provide clues for understanding the environmental change connecting the intense glaciation and an increase in oxygen.
KW - Great Oxidation Event
KW - Paleoproterozoic
KW - atmospheric evolution
KW - carbon isotope
KW - climate change
KW - glaciation
UR - http://www.scopus.com/inward/record.url?scp=77956084256&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956084256&partnerID=8YFLogxK
U2 - 10.1029/2010GC003210
DO - 10.1029/2010GC003210
M3 - Article
AN - SCOPUS:77956084256
SN - 1525-2027
VL - 11
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 8
M1 - Q08019
ER -