TY - JOUR
T1 - Anti-epileptic effects of FABP3 ligand MF1 through the benzodiazepine recognition site of the GABAA receptor
AU - Yabuki, Yasushi
AU - Liu, Jiaqi
AU - Kawahata, Ichiro
AU - Izumi, Hisanao
AU - Shinoda, Yasuharu
AU - Koga, Kohei
AU - Ueno, Shinya
AU - Shioda, Norifumi
AU - Fukunaga, Kohji
N1 - Funding Information:
Funding: This work was supported in part by grants-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (Kakenhi 16H05219 to K.F. and 15H06036 to Y.Y.), Takeda Science Foundation (to Y.Y.), ONO Medical Research Foundation (to Y.Y.), Project of Translational and Clinical Research Core Centers from Japan Agency for Medical Research and Development, AMED (19dm0107071 and 20dm0107071 to K.F.).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Recently, we developed the fatty acid-binding protein 3 (FABP3) ligand MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid) as a therapeutic candidate for α-synucleinopathies. MF1 shows affinity towards γ-aminobutyric acid type-A (GABAA) receptor, but its effect on the receptor remains unclear. Here, we investigate the pharmacological properties of MF1 on the GABAA receptor overexpressed in Neuro2A cells. While MF1 (1–100 µm) alone failed to evoke GABA currents, MF1 (1 µm) promoted GABA currents during GABA exposure (1 and 10 µm). MF1-promoted GABA currents were blocked by flumazenil (10 µm) treatment, suggesting that MF1 enhances receptor function via the benzodiazepine recognition site. Acute and chronic administration of MF1 (0.1, 0.3 and 1.0 mg/kg, p.o.) significantly attenuated status epilepticus (SE) and the mortality rate in pilocarpine (PILO: 300 mg/kg, i.p.)-treated mice, similar to diazepam (DZP: 5.0 mg/kg, i.p.). The anti-epileptic effects of DZP (5.0 mg/kg, i.p.) and MF1 (0.3 mg/kg, p.o.) were completely abolished by flumazenil (25 mg/kg, i.p.) treatment. Pentylenetetrazol (PTZ: 90 mg/kg, i.p.)-induced seizures in mice were suppressed by DZP (5.0 mg/kg, i.p.), but not MF1. Collectively, this suggests that MF1 is a mild enhancer of the GABAA receptor and exercises anti-epileptic effects through the receptor’s benzodiazepine recognition site in PILO-induced SE models.
AB - Recently, we developed the fatty acid-binding protein 3 (FABP3) ligand MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid) as a therapeutic candidate for α-synucleinopathies. MF1 shows affinity towards γ-aminobutyric acid type-A (GABAA) receptor, but its effect on the receptor remains unclear. Here, we investigate the pharmacological properties of MF1 on the GABAA receptor overexpressed in Neuro2A cells. While MF1 (1–100 µm) alone failed to evoke GABA currents, MF1 (1 µm) promoted GABA currents during GABA exposure (1 and 10 µm). MF1-promoted GABA currents were blocked by flumazenil (10 µm) treatment, suggesting that MF1 enhances receptor function via the benzodiazepine recognition site. Acute and chronic administration of MF1 (0.1, 0.3 and 1.0 mg/kg, p.o.) significantly attenuated status epilepticus (SE) and the mortality rate in pilocarpine (PILO: 300 mg/kg, i.p.)-treated mice, similar to diazepam (DZP: 5.0 mg/kg, i.p.). The anti-epileptic effects of DZP (5.0 mg/kg, i.p.) and MF1 (0.3 mg/kg, p.o.) were completely abolished by flumazenil (25 mg/kg, i.p.) treatment. Pentylenetetrazol (PTZ: 90 mg/kg, i.p.)-induced seizures in mice were suppressed by DZP (5.0 mg/kg, i.p.), but not MF1. Collectively, this suggests that MF1 is a mild enhancer of the GABAA receptor and exercises anti-epileptic effects through the receptor’s benzodiazepine recognition site in PILO-induced SE models.
KW - Anti-epileptic effect
KW - Benzodiazepine recognition site
KW - GABA receptor
UR - http://www.scopus.com/inward/record.url?scp=85088968721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088968721&partnerID=8YFLogxK
U2 - 10.3390/ijms21155525
DO - 10.3390/ijms21155525
M3 - Article
C2 - 32752296
AN - SCOPUS:85088968721
SN - 1661-6596
VL - 21
SP - 1
EP - 12
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 15
M1 - 5525
ER -