Abstract
The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey-predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity-stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance-stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance-stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.
Original language | English |
---|---|
Pages (from-to) | 1617-1624 |
Number of pages | 8 |
Journal | Proceedings of the Royal Society B: Biological Sciences |
Volume | 274 |
Issue number | 1618 |
DOIs | |
Publication status | Published - 2007 Jul 7 |
Externally published | Yes |
Keywords
- Adaptive food-web hypothesis
- Anti-predator defence
- Complexity-stability debate
- Food-web flexibility
ASJC Scopus subject areas
- Immunology and Microbiology(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Environmental Science(all)
- Agricultural and Biological Sciences(all)