Application of preconditioning method to gas-liquid two-phase flow computations

Byeong Rog Shin, Satoru Yamamoto, Xin Yuan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The present density based numerical method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a backward-facing step duct, a venturi tube and decelerating cascades are computed. Comparisons of predicted results with experiments are provided and discussed.

Original languageEnglish
Title of host publicationProceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
Subtitle of host publicationVolume 2, Part B, Symposia
EditorsA. Ogut, Y. Tsuji, M. Kawahashi
PublisherAmerican Society of Mechanical Engineers
Pages1539-1546
Number of pages8
ISBN (Print)0791836967, 9780791836965
DOIs
Publication statusPublished - 2003
Event4th ASME/JSME Joint Fluids Engineering Conference - Honolulu, HI, United States
Duration: 2003 Jul 62003 Jul 10

Publication series

NameProceedings of the ASME/JSME Joint Fluids Engineering Conference
Volume2 B

Conference

Conference4th ASME/JSME Joint Fluids Engineering Conference
Country/TerritoryUnited States
CityHonolulu, HI
Period03/7/603/7/10

Fingerprint

Dive into the research topics of 'Application of preconditioning method to gas-liquid two-phase flow computations'. Together they form a unique fingerprint.

Cite this