TY - JOUR
T1 - Applications of the 'Ham Sandwich Theorem' to Eigenvalues of the Laplacian
AU - Funano, Kei
N1 - Publisher Copyright:
© 2016 Kei Funano.
PY - 2016
Y1 - 2016
N2 - We apply Gromov's ham sandwich method to get: (1) domain monotonicity (up to a multiplicative constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.
AB - We apply Gromov's ham sandwich method to get: (1) domain monotonicity (up to a multiplicative constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.
KW - Eigenvalues of the Laplacian
KW - Ham Sandwich Theorem
KW - convexity
UR - http://www.scopus.com/inward/record.url?scp=85010281171&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010281171&partnerID=8YFLogxK
U2 - 10.1515/agms-2016-0015
DO - 10.1515/agms-2016-0015
M3 - Article
AN - SCOPUS:85010281171
SN - 2299-3274
VL - 4
SP - 317
EP - 325
JO - Analysis and Geometry in Metric Spaces
JF - Analysis and Geometry in Metric Spaces
IS - 1
ER -