Area-arrayed graphene nano-ribbon-base strain sensor

Ryohei Nakagawa, Zhi Wang, Ken Suzuki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

Health monitoring devices using a strain sensor, which shows high sensitivity and large deformability, are strongly demanded due to further aging of society with fewer children. Conventional strain sensors, such as metallic strain gauges and semiconductive strain sensors, however, aren't applicable to health monitoring because of their low sensitivity and deformability. In this study, fundamental design of area-arrayed graphene nano-ribbon (GNR) strain senor was proposed in order to fabricate next-generation strain sensor. The sensor was consisted of two sections, which are stress concentration section and stress detecting section. This structure can take full advantage of GNR's properties. Moreover, high quality GNR fabrication process, which is one of the important process in the sensor, was developed by applying CVD (Chemical Vapor Deposition) method. Top-down approach was applied to fabricate the GNR. At first, in order to synthesize a high-quality graphene sheet, acetylene-based LPCVD (low pressure chemical vapor deposition) using a closed Cu foil was employed. After that, graphene was transferred silicon substrate and the quality was evaluated. The high quality graphene was transferred on the soft PDMS substrate and metallic electrodes were fabricated by applying MEMS technology. Area-arrayed fine pin structure was fabricated by using hard PDMS as a stress-concentration section. Finally, both sections were integrated to form a highly sensitive and large deformable pressure sensor. The strain sensitivity of the GNR-base sensor was also evaluated.

Original languageEnglish
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791852156
DOIs
Publication statusPublished - 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: 2018 Nov 92018 Nov 15

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Other

OtherASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Country/TerritoryUnited States
CityPittsburgh
Period18/11/918/11/15

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Area-arrayed graphene nano-ribbon-base strain sensor'. Together they form a unique fingerprint.

Cite this