TY - JOUR
T1 - Aromatic aldehydes and aromatic ketones open ATP-sensitive K+ channels in guinea-pig ventricular myocytes
AU - Fan, Zheng
AU - Nakayama, Keiko
AU - Sawanobori, Tohru
AU - Hiraoka, Masayasu
PY - 1992/8
Y1 - 1992/8
N2 - Patch-clamp techniques were used to study the effects of three carbonyl compounds, 3,4-dihydroxy-benzaldehyde, 2,3-dihydroxybenzaldehyde, and 2,4-dihydroxy-acetophenone, on the adenosine-5′-triphosphate(ATP)-sensitive K+ channel current (IK.ATP) in guinea-pig ventricular myocytes. 3,4-Dihydroxybenzaldehyde (0.5-1 mM) shortened the action potential duration, and this effect was inhibited by application of a specific blocker of IK.ATP, glibenclamide. The shortening of the action potential duration was shown to be caused by a time-independent outward current. In the cell-attached patch configuration, all three compounds activated a kind of single-channel current, which showed an inward rectification at positive potentials and which had a linear current/voltage relation at negative potentials, having a conductance of 90 pS. The current reversed at about 0 mV in symmetrical K+ concentrations on both sides of the membrane. In excised patches this current was blocked by internal application of ATP. Thus we identified this channel as IK.ATP. The activation effects of two aromatic aldehydes were stronger than that of the aromatic ketone. The effect of these compounds on IK.ATP was not reduced by addition of cysteine (10 mM). In inside-out patches, 3,4-dihydroxybenzaldehyde increased the activity of IK.ATP, which had been blocked by 0.5 mM MgATP in the presence of 0.5 mM ADP, but the activation effect was variable and much weaker than that in the cell-attached configuration, and was completely eliminated in the absence of ADP. These results suggest that these compounds: (a) modulate IK.ATP perhaps through an intracellular mechanism, (b) bind covalently to proteins to form a Schiff base which may by responsible for the effects, and (c) may require an ADP-dependent process.
AB - Patch-clamp techniques were used to study the effects of three carbonyl compounds, 3,4-dihydroxy-benzaldehyde, 2,3-dihydroxybenzaldehyde, and 2,4-dihydroxy-acetophenone, on the adenosine-5′-triphosphate(ATP)-sensitive K+ channel current (IK.ATP) in guinea-pig ventricular myocytes. 3,4-Dihydroxybenzaldehyde (0.5-1 mM) shortened the action potential duration, and this effect was inhibited by application of a specific blocker of IK.ATP, glibenclamide. The shortening of the action potential duration was shown to be caused by a time-independent outward current. In the cell-attached patch configuration, all three compounds activated a kind of single-channel current, which showed an inward rectification at positive potentials and which had a linear current/voltage relation at negative potentials, having a conductance of 90 pS. The current reversed at about 0 mV in symmetrical K+ concentrations on both sides of the membrane. In excised patches this current was blocked by internal application of ATP. Thus we identified this channel as IK.ATP. The activation effects of two aromatic aldehydes were stronger than that of the aromatic ketone. The effect of these compounds on IK.ATP was not reduced by addition of cysteine (10 mM). In inside-out patches, 3,4-dihydroxybenzaldehyde increased the activity of IK.ATP, which had been blocked by 0.5 mM MgATP in the presence of 0.5 mM ADP, but the activation effect was variable and much weaker than that in the cell-attached configuration, and was completely eliminated in the absence of ADP. These results suggest that these compounds: (a) modulate IK.ATP perhaps through an intracellular mechanism, (b) bind covalently to proteins to form a Schiff base which may by responsible for the effects, and (c) may require an ADP-dependent process.
KW - 2,3-Dihydroxybenzaldehyde
KW - 2.4-Dihydroxyacetophenone
KW - 3,4-Dihydroxybenzaldehyde
KW - ATP-sensitive K channel
KW - guinea-pig ventricular myocytes
UR - http://www.scopus.com/inward/record.url?scp=0026693722&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026693722&partnerID=8YFLogxK
U2 - 10.1007/BF00370250
DO - 10.1007/BF00370250
M3 - Article
C2 - 1461713
AN - SCOPUS:0026693722
SN - 0031-6768
VL - 421
SP - 409
EP - 415
JO - Pflugers Archiv European Journal of Physiology
JF - Pflugers Archiv European Journal of Physiology
IS - 5
ER -