Abstract
We have investigated the reaction of water vapor with the MgO(100) surface using ambient pressure X-ray photoelectron spectroscopy (AP-XPS), which permits the study of the chemical composition of the MgO/water vapor interface at p(H2O) in the Torr range. Water dissociation on thin MgO(100) films of 4-5.5 monolayers (ML) grown on Ag(100) was studied under isobaric conditions at p(H2O) ranging from 0.005 to 0.5 Torr and temperatures from 380 to -10 °C, up to a maximum relative humidity (RH) of 20%. At RH < 0.01% dissociative adsorption occurs only at defect sites (∼0.08 ML), while terrace sites remain unreactive toward water dissociation. In the range 0.01 < RH < 0.1% there is an abrupt onset of dissociative adsorption at terrace sites which saturates at 1 ML at 0.1% RH, and is accompanied by an increase in molecular water adsorption. At 20% RH there is ∼1 ML of molecularly adsorbed water interacting with a fully hydroxylated interface on MgO(100). The observed onset of hydroxylation near 0.01% RH is suggested to be due to water molecules aggregating at the surface, leading to an autocatalytic dissociation of water at MgO(100) terrace sites.
Original language | English |
---|---|
Pages (from-to) | 12864-12872 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry C |
Volume | 115 |
Issue number | 26 |
DOIs | |
Publication status | Published - 2011 Jul 7 |