Automatic locomotion pattern generation for modular robots

Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, Satoshi Murata, Shigeru Kokaji

Research output: Contribution to journalConference articlepeer-review

36 Citations (Scopus)

Abstract

Locomotion, one of the most basic robotic functions, has been widely studied for several types of robots. As for sdf-reconfigurable modular robots, there are two types of locomotion; one type is realized as a series of self-reconfiguration and the other is realized as a whole body motion such as walking and crawling. Even for the latter type of locomotion, designing control method is more difficult than ordinary robots. This is because the module configuration includes many degrees of freedom and there are a wide variety of possible configurations. We propose an offline method to generate a locomotion pattern automatically for a modular robot in an arbitrary module configuration, which utilizes a neural oscillator as a controller of the joint motor and evolutionary computation method for optimization of the neural oscillator network, which determines the performance of locomotion. We confirm the validity of the method by software simulation and hardware experiments.

Original languageEnglish
Pages (from-to)714-720
Number of pages7
JournalProceedings - IEEE International Conference on Robotics and Automation
Volume1
Publication statusPublished - 2003 Dec 9
Externally publishedYes
Event2003 IEEE International Conference on Robotics and Automation - Taipei, Taiwan, Province of China
Duration: 2003 Sept 142003 Sept 19

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Automatic locomotion pattern generation for modular robots'. Together they form a unique fingerprint.

Cite this