TY - JOUR
T1 - Bed stress assessment under solitary wave run-up
AU - Adityawan, Mohammad Bagus
AU - Tanaka, Hitoshi
N1 - Funding Information:
Acknowledgments. This research was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 22360193), and partially supported by the Open Fund for Scientific Research from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, China. The first author is a scholarship holder under the auspices of the Indonesian Ministry of Education. The authors would also like to thank Professor Synolakis and an anonymous reviewer for their constructive review of the present paper.
PY - 2012
Y1 - 2012
N2 - Understanding and forecasting tsunami wave run-up is very important in mitigating tsunami hazards. The bed stress under wave motion governs viscous wave damping and sediment transport processes, which change coastal morphology. One of the most common methods used for simulation is the shallow water equation (SWE) model, often used with a Manning-style approach for modeling bottom friction. Boundary-layer approaches provide better information regarding bed stress, particularly since they are also valid for nonsteady flows. In this study, a simulation of wave run-up is carried out by simultaneous coupling of the SWE model with the k-ω model. The k-ω model is used near the flow boundary at the bottom, only for assessing the boundary layer shear stress. Free stream velocity and calculations of the free surface evolution are obtained from the SWE model. Both this method, and the conventional method, are applied to the canonical problem of a solitary wave propagating over a constant depth and then up a sloping beach (Synolakis, 1987). The new method is found to increase the computational accuracy and physical realism compared to the conventional Manning method. Comparison of bed shear stresses shows that the new method is able to accommodate the effect of deceleration, which leads to sign changes and a phase shift between the free stream velocity and the bed stress. Furthermore, it is found that during the run-up and run-down process, bed stress in the direction of leaving the shoreline is more dominant.
AB - Understanding and forecasting tsunami wave run-up is very important in mitigating tsunami hazards. The bed stress under wave motion governs viscous wave damping and sediment transport processes, which change coastal morphology. One of the most common methods used for simulation is the shallow water equation (SWE) model, often used with a Manning-style approach for modeling bottom friction. Boundary-layer approaches provide better information regarding bed stress, particularly since they are also valid for nonsteady flows. In this study, a simulation of wave run-up is carried out by simultaneous coupling of the SWE model with the k-ω model. The k-ω model is used near the flow boundary at the bottom, only for assessing the boundary layer shear stress. Free stream velocity and calculations of the free surface evolution are obtained from the SWE model. Both this method, and the conventional method, are applied to the canonical problem of a solitary wave propagating over a constant depth and then up a sloping beach (Synolakis, 1987). The new method is found to increase the computational accuracy and physical realism compared to the conventional Manning method. Comparison of bed shear stresses shows that the new method is able to accommodate the effect of deceleration, which leads to sign changes and a phase shift between the free stream velocity and the bed stress. Furthermore, it is found that during the run-up and run-down process, bed stress in the direction of leaving the shoreline is more dominant.
KW - Bed stress
KW - Boundary layer
KW - Numerical simulation
KW - Shallow water equation
KW - Wave run-up
UR - http://www.scopus.com/inward/record.url?scp=84876403422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876403422&partnerID=8YFLogxK
U2 - 10.5047/eps.2011.02.012
DO - 10.5047/eps.2011.02.012
M3 - Article
AN - SCOPUS:84876403422
SN - 1343-8832
VL - 64
SP - 945
EP - 954
JO - Earth, Planets and Space
JF - Earth, Planets and Space
IS - 10
ER -