TY - GEN
T1 - Binary optimal linear rate 1/2 codes
AU - Betsumiya, Koichi
AU - Gulliver, T. Aaron
AU - Harada, Masaaki
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 1999.
PY - 1999
Y1 - 1999
N2 - In this paper, we classify the optimal linear [n, n/2] codes of length upto 12. We show that there is a unique optimal odd formally self-dual [20],[10],[6] code upto equivalence. We also show that at least one optimal linear [n, n/2] code is self-dual or formally self-dual for lengths upto 48 (except 38 and 40).
AB - In this paper, we classify the optimal linear [n, n/2] codes of length upto 12. We show that there is a unique optimal odd formally self-dual [20],[10],[6] code upto equivalence. We also show that at least one optimal linear [n, n/2] code is self-dual or formally self-dual for lengths upto 48 (except 38 and 40).
UR - http://www.scopus.com/inward/record.url?scp=84867990520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867990520&partnerID=8YFLogxK
U2 - 10.1007/3-540-46796-3_44
DO - 10.1007/3-540-46796-3_44
M3 - Conference contribution
AN - SCOPUS:84867990520
SN - 3540667237
SN - 9783540667230
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 462
EP - 471
BT - Applied Algebra, Algebraic Algorithms and Error-Correcting Codes - 13th International Symposium, AAECC-13, Proceedings
A2 - Fossorier, Marc
A2 - Lin, Shu
A2 - Imai, Hideki
A2 - Poli, Alain
PB - Springer Verlag
T2 - 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC 1999
Y2 - 15 November 1999 through 19 November 1999
ER -