TY - JOUR
T1 - Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant
AU - Han, Jian Min
AU - Hong, Guang
AU - Lin, Hong
AU - Shimizu, Yoshinaka
AU - Wu, Yuhan
AU - Zheng, Gang
AU - Zhang, Hongyu
AU - Sasaki, Keiichi
N1 - Funding Information:
This research was supported by the National Natural Science Foundation of China (81400560) and the National Key Research and Development Program of China (2016YFB1101204). The test implants were kindly provided by Panasonic Healthcare Co Ltd, Tokyo, Japan.
Publisher Copyright:
© 2016 Han et al.
PY - 2016/12/7
Y1 - 2016/12/7
N2 - The purpose of this study was to evaluate the biomechanical and histological behavior of a ceria-stabilized zirconia–alumina nanocomposite (NanoZr) in comparison with that of 3 mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) in Sprague Dawley rats. Cylindrical NanoZr and 3Y-TZP implants (diameter 1 mm, length 2 mm) were used. Implant-surface morphology and surface roughness were determined by scanning white-light interferometry and scanning electron microscopy, respectively. The cylindrical zirconia implants were placed at the distal edge of the femur of Sprague Dawley rats. At weeks 2, 4, and 8, the interfacial shear strength between implant and bone was measured by push-in test. Histological analysis was performed using hard-tissue sections. Bone–implant contact (BIC), the thickness of new bone around the implant within the bone marrow area, and osteoclast numbers were evaluated. The average surface roughness of 3Y-TZP (Sa 0.788 μm) was significantly higher than that of NanoZr (Sa 0.559 μm). The shear strengths of 3Y-TZP and NanoZr were similar at 2 weeks, but at 4 and 8 weeks the shear strength of NanoZr was higher than that of 3Y-TZP. The average BIC values within the bone marrow area for 3Y-TZP and NanoZr were 25.26% and 31.51% at 2 weeks, 46.78% and 38% at 4 weeks, and 47.88% and 56.81% at 8 weeks, respectively. The average BIC values within the cortical area were 38.86% and 58.42% at 2 weeks, 66.82% and 57.74% at 4 weeks, and 79.91% and 78.97% at 8 weeks, respectively. The mean BIC value did not differ significantly between the two zirconia materials at any time point. The NanoZr implants were biocompatible, capable of establishing close BIC, and may be preferred for metal-free dental implants.
AB - The purpose of this study was to evaluate the biomechanical and histological behavior of a ceria-stabilized zirconia–alumina nanocomposite (NanoZr) in comparison with that of 3 mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) in Sprague Dawley rats. Cylindrical NanoZr and 3Y-TZP implants (diameter 1 mm, length 2 mm) were used. Implant-surface morphology and surface roughness were determined by scanning white-light interferometry and scanning electron microscopy, respectively. The cylindrical zirconia implants were placed at the distal edge of the femur of Sprague Dawley rats. At weeks 2, 4, and 8, the interfacial shear strength between implant and bone was measured by push-in test. Histological analysis was performed using hard-tissue sections. Bone–implant contact (BIC), the thickness of new bone around the implant within the bone marrow area, and osteoclast numbers were evaluated. The average surface roughness of 3Y-TZP (Sa 0.788 μm) was significantly higher than that of NanoZr (Sa 0.559 μm). The shear strengths of 3Y-TZP and NanoZr were similar at 2 weeks, but at 4 and 8 weeks the shear strength of NanoZr was higher than that of 3Y-TZP. The average BIC values within the bone marrow area for 3Y-TZP and NanoZr were 25.26% and 31.51% at 2 weeks, 46.78% and 38% at 4 weeks, and 47.88% and 56.81% at 8 weeks, respectively. The average BIC values within the cortical area were 38.86% and 58.42% at 2 weeks, 66.82% and 57.74% at 4 weeks, and 79.91% and 78.97% at 8 weeks, respectively. The mean BIC value did not differ significantly between the two zirconia materials at any time point. The NanoZr implants were biocompatible, capable of establishing close BIC, and may be preferred for metal-free dental implants.
KW - Dental implant
KW - Histomorphometry
KW - Push-in test
KW - Zirconia
KW - Zirconia–alumina nanocomposite
UR - http://www.scopus.com/inward/record.url?scp=85006830473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006830473&partnerID=8YFLogxK
U2 - 10.2147/IJN.S119519
DO - 10.2147/IJN.S119519
M3 - Article
C2 - 27994456
AN - SCOPUS:85006830473
SN - 1176-9114
VL - 11
SP - 6507
EP - 6516
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -