TY - JOUR
T1 - Blow-up of H1 solution for the nonlinear Schrödinger equation
AU - Ogawa, Takayoshi
AU - Tsutsumi, Yoshio
PY - 1991/8
Y1 - 1991/8
N2 - We consider the blow-up of the solution in H1 for the following nonlinear Schrödinger equation: i ∂ ∂tu + Δu = -|u|p - 1u, x ε{lunate} Rn, t ≥ 0, (*) u(0, x) = u0(X), x ε{lunate} Rn, t = 0, where n ≥2 and 1 + 4/n ≤ p < min { (n + 2) (n - 2), 5}. We prove that if the initial data u0 in H1 are radially symmetric and have negative energy, then the solution of (*) in H1 blows up in finite time. We do not assume that xu0 ε{lunate} L2, and therefore our result is the generalization of the results of Glassey [4] and M. Tsutsumi [18] for the radially symmetric case.
AB - We consider the blow-up of the solution in H1 for the following nonlinear Schrödinger equation: i ∂ ∂tu + Δu = -|u|p - 1u, x ε{lunate} Rn, t ≥ 0, (*) u(0, x) = u0(X), x ε{lunate} Rn, t = 0, where n ≥2 and 1 + 4/n ≤ p < min { (n + 2) (n - 2), 5}. We prove that if the initial data u0 in H1 are radially symmetric and have negative energy, then the solution of (*) in H1 blows up in finite time. We do not assume that xu0 ε{lunate} L2, and therefore our result is the generalization of the results of Glassey [4] and M. Tsutsumi [18] for the radially symmetric case.
UR - http://www.scopus.com/inward/record.url?scp=0000835523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000835523&partnerID=8YFLogxK
U2 - 10.1016/0022-0396(91)90052-B
DO - 10.1016/0022-0396(91)90052-B
M3 - Article
AN - SCOPUS:0000835523
SN - 0022-0396
VL - 92
SP - 317
EP - 330
JO - Journal of Differential Equations
JF - Journal of Differential Equations
IS - 2
ER -