Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord

Sufan Wu, Yoshihisa Suzuki, Yoko Ejiri, Toru Noda, Hongliang Bai, Masaaki Kitada, Kazuya Kataoka, Masayoshi Ohta, Hirotomi Chou, Chizuka Ide

Research output: Contribution to journalArticlepeer-review

178 Citations (Scopus)

Abstract

Transplantation of bone marrow stromal cells (MSCs) has been regarded as a potential approach for promoting nerve regeneration. In the present study, we investigated the influence of MSCs on spinal cord neurosphere cells in vitro and on the regeneration of injured spinal cord in vivo by grafting. MSCs from adult rats were cocultured with fetal spinal cord-derived neurosphere cells by either cell mixing or making monolayered-feeder cultures. In the mixed cell cultures, neuroshpere cells were stimulated to develop extensive processes. In the monolayered-feeder cultures, numerous processes from neurosphere cells appeared to be attracted to MSCs. In an in vivo experiment, grafted MSCs promoted the regeneration of injured spinal cord by enhancing tissue repair of the lesion, leaving apparently smaller cavities than in controls. Although the number of grafted MSCs gradually decreased, some treated animals showed remarkable functional recovery. These results suggest that MSCs might have profound effects on the differentiation of neurosphere cells and be able to promote regeneration of the spinal cord by means of grafting.

Original languageEnglish
Pages (from-to)343-351
Number of pages9
JournalJournal of Neuroscience Research
Volume72
Issue number3
DOIs
Publication statusPublished - 2003 May 1

Keywords

  • Bone marrow
  • Coculture
  • Neurosphere
  • Spinal cord injury
  • Stromal cell

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord'. Together they form a unique fingerprint.

Cite this