TY - GEN
T1 - Bone regeneration with a transitory scaffold modifying local environment
AU - Kamakura, S.
AU - Suzuki, O.
AU - Honda, Y.
AU - Kamijo, R.
AU - Nakamura, M.
AU - Takahashi, I.
AU - Sasaki, K.
AU - Oda, M.
AU - Arai, F.
AU - Fukuda, T.
PY - 2006
Y1 - 2006
N2 - Cell function to form bone would be influenced by local environment, such as mechanical stress and tissue fluid constituents over intracellular signal transduction to macroscopic order. For example, osteoblasts and osteocytes respond to mechanical stimuli by changing their metabolism, proliferation, and differentiation. Our recent study showed that the elevated extracellular calcium stimulated secretion of osteogenic bone morphogenetic protein-2 by a macrophage cell line. The macrophage-like cells appeared near bioresorbable bone substitute such as octacalcium phosphate (OCP). OCP has been identified an intermediate to various biological apatite crystals. If OCP were implanted into the living animals, bio-resorbable OCP would modify local environment during bone regeneration by irreversibly transforming to bone-like apatite, which accompanied with calcium uptake and phosphate release. Recently, we have developed a synthetic bone regenerative material constructed of synthetic OCP and porcine atelocollagen (OCP/Collagen). OCP/Collagen enhanced bone regeneration more than OCP per se. OCP/Collagen constructed three-dimensional scaffold for bone regeneration.
AB - Cell function to form bone would be influenced by local environment, such as mechanical stress and tissue fluid constituents over intracellular signal transduction to macroscopic order. For example, osteoblasts and osteocytes respond to mechanical stimuli by changing their metabolism, proliferation, and differentiation. Our recent study showed that the elevated extracellular calcium stimulated secretion of osteogenic bone morphogenetic protein-2 by a macrophage cell line. The macrophage-like cells appeared near bioresorbable bone substitute such as octacalcium phosphate (OCP). OCP has been identified an intermediate to various biological apatite crystals. If OCP were implanted into the living animals, bio-resorbable OCP would modify local environment during bone regeneration by irreversibly transforming to bone-like apatite, which accompanied with calcium uptake and phosphate release. Recently, we have developed a synthetic bone regenerative material constructed of synthetic OCP and porcine atelocollagen (OCP/Collagen). OCP/Collagen enhanced bone regeneration more than OCP per se. OCP/Collagen constructed three-dimensional scaffold for bone regeneration.
UR - http://www.scopus.com/inward/record.url?scp=50449093414&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50449093414&partnerID=8YFLogxK
U2 - 10.1109/MHS.2006.320329
DO - 10.1109/MHS.2006.320329
M3 - Conference contribution
AN - SCOPUS:50449093414
SN - 1424407176
SN - 9781424407170
T3 - 2006 IEEE International Symposium on Micro-Nano Mechanical and Human Science, MHS
BT - 2006 IEEE International Symposium on Micro-Nano Mechanical and Human Science, MHS
T2 - 2006 IEEE International Symposium on Micro-Nano Mechanical and Human Science, MHS
Y2 - 5 November 2006 through 8 November 2006
ER -