TY - JOUR
T1 - CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region
AU - Moriguchi, Shigeki
AU - Shioda, Norifumi
AU - Han, Feng
AU - Narahashi, Toshio
AU - Fukunaga, Kohji
PY - 2008/8
Y1 - 2008/8
N2 - Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4- propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCα activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCα activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCα activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.
AB - Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4- propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCα activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCα activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCα activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.
KW - Alzheimer's disease
KW - Calcium/calmodulin-dependent protein kinase II
KW - Long-term potentiation
KW - N-methyl-D-aspartate acid
KW - Nefiracetam
KW - Protein kinase C
UR - http://www.scopus.com/inward/record.url?scp=48249090845&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48249090845&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2008.05440.x
DO - 10.1111/j.1471-4159.2008.05440.x
M3 - Article
C2 - 18445137
AN - SCOPUS:48249090845
SN - 0022-3042
VL - 106
SP - 1092
EP - 1103
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 3
ER -