TY - JOUR
T1 - CaMKIIβ-mediated LIM-kinase activation plays a crucial role in BDNF-induced neuritogenesis
AU - Saito, Akihiko
AU - Miyajima, Ken
AU - Akatsuka, Junichi
AU - Kondo, Hiroshi
AU - Mashiko, Toshiya
AU - Kiuchi, Tai
AU - Ohashi, Kazumasa
AU - Mizuno, Kensaku
PY - 2013/7
Y1 - 2013/7
N2 - LIM-kinase 1 (LIMK1) regulates actin cytoskeletal reorganization by phosphorylating and inactivating actin-depolymerizing factor and cofilin. We examined the role of LIMK1 in brain-derived neurotrophic factor (BDNF)-induced neuritogenesis in primary-cultured rat cortical neurons. Knockdown of LIMK1 or expression of a kinase-dead LIMK1 mutant suppressed BDNF-induced enhancement of primary neurite formation. By contrast, expression of an active form of LIMK1 promoted primary neuritogenesis in the absence of BDNF. BDNF-induced neuritogenesis was inhibited by KN-93, an inhibitor of Ca2+/calmodulin-dependent protein kinases (CaMKs), but not by STO-609, an inhibitor of CaMK-kinase (CaMKK). CaMKK activity is required for the activation of CaMKI and CaMKIV, but not CaMKII, which suggests that CaMKII is principally involved in BDNF-induced enhancement of neuritogenesis. Knockdown of CaMKIIβ, but not CaMKIIα, suppressed BDNF-induced neuritogenesis. Active CaMKIIβ promoted neuritogenesis, and this promotion was inhibited by knockdown of LIMK1, indicating that CaMKIIβ is involved in BDNF-induced neuritogenesis via activation of LIMK1. Furthermore, in vitro kinase assays revealed that CaMKIIβ phosphorylates LIMK1 at Thr-508 in the kinase domain and activates the cofilin-phosphorylating activity of LIMK1. In summary, these results suggest that CaMKIIβ-mediated activation of LIMK1 plays a crucial role in BDNF-induced enhancement of primary neurite formation.
AB - LIM-kinase 1 (LIMK1) regulates actin cytoskeletal reorganization by phosphorylating and inactivating actin-depolymerizing factor and cofilin. We examined the role of LIMK1 in brain-derived neurotrophic factor (BDNF)-induced neuritogenesis in primary-cultured rat cortical neurons. Knockdown of LIMK1 or expression of a kinase-dead LIMK1 mutant suppressed BDNF-induced enhancement of primary neurite formation. By contrast, expression of an active form of LIMK1 promoted primary neuritogenesis in the absence of BDNF. BDNF-induced neuritogenesis was inhibited by KN-93, an inhibitor of Ca2+/calmodulin-dependent protein kinases (CaMKs), but not by STO-609, an inhibitor of CaMK-kinase (CaMKK). CaMKK activity is required for the activation of CaMKI and CaMKIV, but not CaMKII, which suggests that CaMKII is principally involved in BDNF-induced enhancement of neuritogenesis. Knockdown of CaMKIIβ, but not CaMKIIα, suppressed BDNF-induced neuritogenesis. Active CaMKIIβ promoted neuritogenesis, and this promotion was inhibited by knockdown of LIMK1, indicating that CaMKIIβ is involved in BDNF-induced neuritogenesis via activation of LIMK1. Furthermore, in vitro kinase assays revealed that CaMKIIβ phosphorylates LIMK1 at Thr-508 in the kinase domain and activates the cofilin-phosphorylating activity of LIMK1. In summary, these results suggest that CaMKIIβ-mediated activation of LIMK1 plays a crucial role in BDNF-induced enhancement of primary neurite formation.
UR - http://www.scopus.com/inward/record.url?scp=84879419730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879419730&partnerID=8YFLogxK
U2 - 10.1111/gtc.12054
DO - 10.1111/gtc.12054
M3 - Article
C2 - 23600483
AN - SCOPUS:84879419730
SN - 1356-9597
VL - 18
SP - 533
EP - 543
JO - Genes to Cells
JF - Genes to Cells
IS - 7
ER -