Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate

Takehiko Tosha, Takashi Nomura, Takuma Nishida, Naoya Saeki, Kouta Okubayashi, Raika Yamagiwa, Michihiro Sugahara, Takanori Nakane, Keitaro Yamashita, Kunio Hirata, Go Ueno, Tetsunari Kimura, Tamao Hisano, Kazumasa Muramoto, Hitomi Sawai, Hanae Takeda, Eiichi Mizohata, Ayumi Yamashita, Yusuke Kanematsu, Yu TakanoEriko Nango, Rie Tanaka, Osamu Nureki, Osami Shoji, Yuka Ikemoto, Hironori Murakami, Shigeki Owada, Kensuke Tono, Makina Yabashi, Masaki Yamamoto, Hideo Ago, So Iwata, Hiroshi Sugimoto, Yoshitsugu Shiro, Minoru Kubo

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)

Abstract

Time-resolved serial femtosecond crystallography using an X-ray free electron laser (XFEL) in conjunction with a photosensitive caged-compound offers a crystallographic method to track enzymatic reactions. Here we demonstrate the application of this method using fungal NO reductase, a heme-containing enzyme, at room temperature. Twenty milliseconds after caged-NO photolysis, we identify a NO-bound form of the enzyme, which is an initial intermediate with a slightly bent Fe-N-O coordination geometry at a resolution of 2.1 Å. The NO geometry is compatible with those analyzed by XFEL-based cryo-crystallography and QM/MM calculations, indicating that we obtain an intact Fe3+-NO coordination structure that is free of X-ray radiation damage. The slightly bent NO geometry is appropriate to prevent immediate NO dissociation and thus accept H- from NADH. The combination of using XFEL and a caged-compound is a powerful tool for determining functional enzyme structures during catalytic reactions at the atomic level.

Original languageEnglish
Article number1585
JournalNature communications
Volume8
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate'. Together they form a unique fingerprint.

Cite this