TY - JOUR
T1 - Characterization of mitochondrial content and respiratory capacities of broiler chicken skeletal muscles with different muscle fiber compositions
AU - Hakamata, Yuki
AU - Watanabe, Kouichi
AU - Amo, Taku
AU - Toyomizu, Masaaki
AU - Kikusato, Motoi
N1 - Funding Information:
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant nos. 25850182/16H06205 [M.K.] and 15H04582 [M.T.]) and by JSPS Core-to-Core Advanced Research Networks Program, entitled “Establishment of international agricultural immunology research-core for a quantum improvement in food safety”.
Publisher Copyright:
© 2018, Japan Poultry Science Association.
PY - 2018
Y1 - 2018
N2 - Mitochondrial content is regarded a useful feature to distinguish muscle-fiber types in terms of energy metabolism in skeletal muscles. Increasing evidence suggests that specific mitochondrial bioenergetic phenotypes exist in metabolically different muscle fibers. A few studies have examined the energetic properties of skeletal muscle in domestic fowls; however, no information on muscle bioenergetics in broiler chickens selectively bred for faster growth is available. In this study, we aimed to characterize the mitochondrial contents and functions of chicken skeletal muscle consisting entirely of type I (oxidative) (M. pubo-ischio-femoralis pars medialis), type IIA (glycolytic/ oxidative) (M. pubo-ischio-femoralis pars lateralis), and type IIB (glycolytic) (M. pectoralis) muscle fibers. Citrate synthase (CS) activity was the highest in type IIA muscle tissues and isolated mitochondria, among the muscle tissues tested. Although no difference was registered in mitochondrial CS activity between type IIB and type I muscles, tissue CS activity was significantly higher in the latter. Histochemical staining for NADH tetrazolium reductase and the ratio of muscle-tissue to mitochondrial CS activity indicated that type I, type IIA, and type IIB muscle-fiber types showed decreasing mitochondrial content. Mitochondria from type I muscle exhibited a higher coupled respiration rate induced by pyruvate/malate, palmitoyl-CoA/malate, and palmitoyl-carnitine, as respiratory substrates, than type IIB-muscle mitochondria, while the response of mitochondria from type IIA muscle to those substrates was comparable to that of mitochondria from type I muscle. Type IIA-muscle mitochondria exhibited the highest carnitine palmitoyltransferase-2 level among all tissues tested, which may contribute to the higher fatty acid oxidation in these mitochondria. The results suggest that mitochondrial abundance is one of the features differentiating metabolic characteristics of different chicken skeletal muscle types. Moreover, the study demonstrated that type IIA-muscle mitochondria may have distinct metabolic capacities.
AB - Mitochondrial content is regarded a useful feature to distinguish muscle-fiber types in terms of energy metabolism in skeletal muscles. Increasing evidence suggests that specific mitochondrial bioenergetic phenotypes exist in metabolically different muscle fibers. A few studies have examined the energetic properties of skeletal muscle in domestic fowls; however, no information on muscle bioenergetics in broiler chickens selectively bred for faster growth is available. In this study, we aimed to characterize the mitochondrial contents and functions of chicken skeletal muscle consisting entirely of type I (oxidative) (M. pubo-ischio-femoralis pars medialis), type IIA (glycolytic/ oxidative) (M. pubo-ischio-femoralis pars lateralis), and type IIB (glycolytic) (M. pectoralis) muscle fibers. Citrate synthase (CS) activity was the highest in type IIA muscle tissues and isolated mitochondria, among the muscle tissues tested. Although no difference was registered in mitochondrial CS activity between type IIB and type I muscles, tissue CS activity was significantly higher in the latter. Histochemical staining for NADH tetrazolium reductase and the ratio of muscle-tissue to mitochondrial CS activity indicated that type I, type IIA, and type IIB muscle-fiber types showed decreasing mitochondrial content. Mitochondria from type I muscle exhibited a higher coupled respiration rate induced by pyruvate/malate, palmitoyl-CoA/malate, and palmitoyl-carnitine, as respiratory substrates, than type IIB-muscle mitochondria, while the response of mitochondria from type IIA muscle to those substrates was comparable to that of mitochondria from type I muscle. Type IIA-muscle mitochondria exhibited the highest carnitine palmitoyltransferase-2 level among all tissues tested, which may contribute to the higher fatty acid oxidation in these mitochondria. The results suggest that mitochondrial abundance is one of the features differentiating metabolic characteristics of different chicken skeletal muscle types. Moreover, the study demonstrated that type IIA-muscle mitochondria may have distinct metabolic capacities.
KW - Carnitine palmitoyltransferase system
KW - Citrate synthase
KW - Mitochondrial content
UR - http://www.scopus.com/inward/record.url?scp=85052245594&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052245594&partnerID=8YFLogxK
U2 - 10.2141/jpsa.0170141
DO - 10.2141/jpsa.0170141
M3 - Article
AN - SCOPUS:85052245594
SN - 1346-7395
VL - 55
SP - 210
EP - 216
JO - Journal of Poultry Science
JF - Journal of Poultry Science
IS - 3
ER -