TY - JOUR
T1 - Characterization of vegetative growth of a supernodulating soybean genotype, Sakukei 4
AU - Matsunami, Toshinori
AU - Kaihatsu, Azusa
AU - Maekawa, Tomiya
AU - Takahashi, Motoki
AU - Kokubun, Makie
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004
Y1 - 2004
N2 - The supernodulating soybean cultivar Sakukei 4 was previously characterized by its superior ability to maintain a high leaf nitrogen (N) content and high photosynthetic rate. Despite these desirable traits, the growth performance of Sakukei 4 was inferior to that of its normally nodulating parental cultivar, Enrei. The physiological basis for the unique growth characteristics of Sakukei 4 remains unclear. The objective of the present study was to characterize in further detail the vegetative growth of Sakukei 4, particularly during the period before pod expansion. In the first experiment, the growth of Sakukei 4 was compared with that of its parental cultivar Enrei under various rates of N fertilizer. The dry weight of tops, roots and nodules of the plants grown at lower rates of N application was greater in Enrei than in Sakukei 4, but it was vice versa at higher rates of N application. The number and weight of nodules were far greater in Sakukei 4 than in Enrei at any rate of N application. These genotypic differences were significant on 39 days after sowing (DAS) and became greater at the flowering stage. In the second experiment, therefore, more detailed growth analysis was made during an earlier growth stage (DAS 31-46). During this period, relative growth rate (RGR), net assimilation rate (NAR) and leaf area ratio (LAR) were lower in Sakukei 4 than in Enrei and the related non-nodulating line En1282, whereas the leaf photosynthetic rate was higher in Sakukei 4 at all leaf positions. The dry-matter partitioning to each plant part excluding nodules was similar in all three genotypes. The rate of leaf expansion in Sakukei 4 during this period was significantly slower than that in the other genotypes. These results suggest that the inferior growth of Sakukei 4 prior to flowering is probably due to excessive dry-matter partitioning to nodules and depressed capability of leaf expansion and root growth, which might limit dry-matter production of the whole plant during pre-flowering stage.
AB - The supernodulating soybean cultivar Sakukei 4 was previously characterized by its superior ability to maintain a high leaf nitrogen (N) content and high photosynthetic rate. Despite these desirable traits, the growth performance of Sakukei 4 was inferior to that of its normally nodulating parental cultivar, Enrei. The physiological basis for the unique growth characteristics of Sakukei 4 remains unclear. The objective of the present study was to characterize in further detail the vegetative growth of Sakukei 4, particularly during the period before pod expansion. In the first experiment, the growth of Sakukei 4 was compared with that of its parental cultivar Enrei under various rates of N fertilizer. The dry weight of tops, roots and nodules of the plants grown at lower rates of N application was greater in Enrei than in Sakukei 4, but it was vice versa at higher rates of N application. The number and weight of nodules were far greater in Sakukei 4 than in Enrei at any rate of N application. These genotypic differences were significant on 39 days after sowing (DAS) and became greater at the flowering stage. In the second experiment, therefore, more detailed growth analysis was made during an earlier growth stage (DAS 31-46). During this period, relative growth rate (RGR), net assimilation rate (NAR) and leaf area ratio (LAR) were lower in Sakukei 4 than in Enrei and the related non-nodulating line En1282, whereas the leaf photosynthetic rate was higher in Sakukei 4 at all leaf positions. The dry-matter partitioning to each plant part excluding nodules was similar in all three genotypes. The rate of leaf expansion in Sakukei 4 during this period was significantly slower than that in the other genotypes. These results suggest that the inferior growth of Sakukei 4 prior to flowering is probably due to excessive dry-matter partitioning to nodules and depressed capability of leaf expansion and root growth, which might limit dry-matter production of the whole plant during pre-flowering stage.
KW - Dry matter partitioning
KW - Glycine max
KW - Growth rate
KW - Leaf expansion
KW - Nitrogen fixation
KW - Photosynthesis
KW - Soybean
KW - Supernodulation
UR - http://www.scopus.com/inward/record.url?scp=3042555549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042555549&partnerID=8YFLogxK
U2 - 10.1626/pps.7.165
DO - 10.1626/pps.7.165
M3 - Article
AN - SCOPUS:3042555549
SN - 1343-943X
VL - 7
SP - 165
EP - 171
JO - Plant Production Science
JF - Plant Production Science
IS - 2
ER -