TY - JOUR
T1 - Charge density distribution of KMnF3 under high pressure
AU - Aoyagi, S.
AU - Toda, S.
AU - Nishibori, E.
AU - Kuroiwa, Y.
AU - Ohishi, Y.
AU - Takata, M.
AU - Sakata, M.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - The charge density distributions of KMnF3 under high pressure (0.3, 1.0, 1.7, 2.7, 3.4, 4.0, 4.8, 5.7, and 6.3 GPa) were determined from the synchrotron-radiation powder-diffraction data by the maximum entropy method (MEM). The difference-MEM charge density, which represents deformations from the spherical atomic charge density for each atom, is changed by applying pressure. The excess electrons on the Mn-F bond suggesting a Mn3d-F2p orbital hybridization were found in the difference-MEM charge densities at 0.3 GPa. The excess electrons are localized near Mn nuclei by increasing pressure. Two types of Mn-F bonds were found in the high-pressure tetragonal phase. One is parallel and another is perpendicular to the rotation axis of the F6 octahedra (i.e., c axis). The number of electrons for K, F, and Mn atoms was estimated from the MEM charge densities. The valence statuses of K atom were +1.02e at 0.3 GPa and +0.20e at 6.3 GPa. The valence statuses of F atom were -0.96e at 0.3GPa and -0.60 and -0.77e at 6.3 GPa. On the other hand, the valence status of Mn atom was virtually unchanged with pressure. This fact suggests that the electron charge transfer from F to K atom occurs with increasing pressure.
AB - The charge density distributions of KMnF3 under high pressure (0.3, 1.0, 1.7, 2.7, 3.4, 4.0, 4.8, 5.7, and 6.3 GPa) were determined from the synchrotron-radiation powder-diffraction data by the maximum entropy method (MEM). The difference-MEM charge density, which represents deformations from the spherical atomic charge density for each atom, is changed by applying pressure. The excess electrons on the Mn-F bond suggesting a Mn3d-F2p orbital hybridization were found in the difference-MEM charge densities at 0.3 GPa. The excess electrons are localized near Mn nuclei by increasing pressure. Two types of Mn-F bonds were found in the high-pressure tetragonal phase. One is parallel and another is perpendicular to the rotation axis of the F6 octahedra (i.e., c axis). The number of electrons for K, F, and Mn atoms was estimated from the MEM charge densities. The valence statuses of K atom were +1.02e at 0.3 GPa and +0.20e at 6.3 GPa. The valence statuses of F atom were -0.96e at 0.3GPa and -0.60 and -0.77e at 6.3 GPa. On the other hand, the valence status of Mn atom was virtually unchanged with pressure. This fact suggests that the electron charge transfer from F to K atom occurs with increasing pressure.
UR - http://www.scopus.com/inward/record.url?scp=57749178434&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57749178434&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.78.224102
DO - 10.1103/PhysRevB.78.224102
M3 - Article
AN - SCOPUS:57749178434
SN - 1098-0121
VL - 78
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 22
M1 - 224102
ER -