TY - JOUR
T1 - Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C60 superconductors and manganites
AU - Takata, M.
AU - Nishibori, E.
AU - Sakata, M.
PY - 2001
Y1 - 2001
N2 - The recent progress of the accurate charge density studies by the Maximum Entropy Method (MEM) utilizing X-ray powder diffraction is reviewed with some examples. Results for PrBCO (PrBa2Cu3O7-δ), YBCO (YBa2Cu3O7-δ), C60 superconductors (Rb2CsC60, K2RbC60, Na2RbC60) and the layered manganite, NdSr2Mn2O7, which is well known as colossal magnetoresistive (CMR)-related material, are given. For non-super conductor, PrBCO, it is found in the MEM charge density that there exist directional robes of the charge density from Pr atom toward the O atoms in the CuO2 conduction planes. On the other hand, for a very well known high Tc super conductor, YBCO, appreciable charge densities in the interatomic region around the Y atom is not recognized in the MEM charge density. The distinct difference of the charge densities between PrBCO and YBCO presents clear experimental evidence of the hybridization between Pr(4f)-O(2pπ) orbitals which supports the idea that the hole trapping by the hybridized states suppresses the superconductivity in PrBCO. The MEM charge densities of the fullerene superconductors, Rb2CsC60, K2RbC60 and Na2RbC60, show distinct structural differences from that of non-superconductors, C60 and Li2CsC60, reflecting the superconducting properties. And the charge deficiencies of the doped metal atoms, which should be associated with charge transfer from the metal atoms to the C60 molecule seems to have strong correlation to the superconducting transition temperature, Tc. As the bigger the charge transfer, the higher the Tc. The accurate MEM charge density of antiferromagnetic manganite, NdSr2Mn2O7, presents the direct imaging of spontaneous ordering of the dx2- y2 orbital indicating anisotropic exchange couplings between the local-spins on the Mn sites, which causes an unique layered-type spin order. The theoretical background of the MEM is also mentioned in some detail.
AB - The recent progress of the accurate charge density studies by the Maximum Entropy Method (MEM) utilizing X-ray powder diffraction is reviewed with some examples. Results for PrBCO (PrBa2Cu3O7-δ), YBCO (YBa2Cu3O7-δ), C60 superconductors (Rb2CsC60, K2RbC60, Na2RbC60) and the layered manganite, NdSr2Mn2O7, which is well known as colossal magnetoresistive (CMR)-related material, are given. For non-super conductor, PrBCO, it is found in the MEM charge density that there exist directional robes of the charge density from Pr atom toward the O atoms in the CuO2 conduction planes. On the other hand, for a very well known high Tc super conductor, YBCO, appreciable charge densities in the interatomic region around the Y atom is not recognized in the MEM charge density. The distinct difference of the charge densities between PrBCO and YBCO presents clear experimental evidence of the hybridization between Pr(4f)-O(2pπ) orbitals which supports the idea that the hole trapping by the hybridized states suppresses the superconductivity in PrBCO. The MEM charge densities of the fullerene superconductors, Rb2CsC60, K2RbC60 and Na2RbC60, show distinct structural differences from that of non-superconductors, C60 and Li2CsC60, reflecting the superconducting properties. And the charge deficiencies of the doped metal atoms, which should be associated with charge transfer from the metal atoms to the C60 molecule seems to have strong correlation to the superconducting transition temperature, Tc. As the bigger the charge transfer, the higher the Tc. The accurate MEM charge density of antiferromagnetic manganite, NdSr2Mn2O7, presents the direct imaging of spontaneous ordering of the dx2- y2 orbital indicating anisotropic exchange couplings between the local-spins on the Mn sites, which causes an unique layered-type spin order. The theoretical background of the MEM is also mentioned in some detail.
UR - http://www.scopus.com/inward/record.url?scp=0035138214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035138214&partnerID=8YFLogxK
U2 - 10.1524/zkri.216.2.71.20335
DO - 10.1524/zkri.216.2.71.20335
M3 - Review article
AN - SCOPUS:0035138214
SN - 0044-2968
VL - 216
SP - 71
EP - 86
JO - Zeitschfrift fur Kristallographie
JF - Zeitschfrift fur Kristallographie
IS - 2
ER -