Chemical abundances of the Milky Way thick disk and stellar halo. II. Sodium, iron-peak, and neutron-capture elements

M. N. Ishigaki, W. Aoki, M. Chiba

Research output: Contribution to journalArticlepeer-review

126 Citations (Scopus)


We present chemical abundance analyses of sodium, iron-peak, and neutron-capture elements for 97 kinematically selected thick disk, inner halo, and outer halo stars with metallicities -3.3 < [Fe/H] <-0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of α elements by performing a one-dimensional LTE abundance analysis based on the high-resolution (R ∼ 50, 000) spectra obtained with the Subaru/HDS. In this paper, a similar analysis is performed to determine abundances of an additional 17 elements. We show that, in metallicities below [Fe/H] ∼-2, the abundance ratios of many elements in the thick disk, inner halo, and outer halo subsamples are largely similar. In contrast, in higher metallicities ([Fe/H] ≳ -1.5), differences in some of the abundance ratios among the three subsamples are identified. Specifically, the [Na/Fe], [Ni/Fe], [Cu/Fe], and [Zn/Fe] ratios in the inner and outer halo subsamples are found to be lower than those in the thick disk subsample. A modest abundance difference between the two halo subsamples in this metallicity range is also seen for the [Na/Fe] and [Zn/Fe] ratios. In contrast to that observed for [Mg/Fe] in our previous paper, [Eu/Fe] ratios are more enhanced in the two halo subsamples rather than in the thick disk subsample. The observed distinct chemical abundances of some elements between the thick disk and inner/outer halo subsamples with [Fe/H] >-1.5 support the hypothesis that these components formed through different mechanisms. In particular, our results favor the scenario that the inner and outer halo components formed through an assembly of multiple progenitor systems that experienced various degrees of chemical enrichments, while the thick disk formed through rapid star formation with an efficient mixing of chemical elements. The lower [Na/Fe] and [Zn/Fe] observed in stars with the outer halo kinematics may further suggest that progenitors with longer star formation timescales contributed to the buildup of the relatively metal-rich part of stellar halos.

Original languageEnglish
Article number67
JournalAstrophysical Journal
Issue number1
Publication statusPublished - 2013 Jul 1


  • Galaxy: formation
  • Galaxy: halo
  • stars: abundances


Dive into the research topics of 'Chemical abundances of the Milky Way thick disk and stellar halo. II. Sodium, iron-peak, and neutron-capture elements'. Together they form a unique fingerprint.

Cite this